= | v - Y w

FUNDAMENTALS OF PROGRAMMING
AN INTRODUCTION TO
COMPUTER PROGRAMMING USING C++

RICHARD HALTERMAN

Business and
(X Educational Technologies

7- A Division of Wm. C. Brown Communications, Inc.

B. Business and
(X Educational Technologies
7- ECH A Division of Wm. C. Brown Communications, Inc.

Vice President and Publisher Susan A. Simon

Acquisitions Editor Linda Meehan Avenarius

Sales Manager Paul Ducham

Advertising/Marketing Coordinator Jennifer Wherry Finders
Product Development Assistant Carrie Langas

Wm. C. Brown Communications, Inc.

Chief Executive Officer G. Franklin Lewis

Corporate Senior Vice President and Chief Financial Officer Robert Chesterman
Corporate Senior Vice President and President of Manufacturing Roger Meyer

Executive Vice President/General Manager, Brown & Benchmark Publishers 7om Doran
Executive Vice President/General Manager, Wm. C. Brown Publishers Beverly Kolz

Names of all products mentioned herein are used for identification purposes only and may be trade-
marks and/or registered trademarks of their respective owners. Business and Educational
Technologies and Wm. C. Brown Communications disclaim any affiliation, association, or connec-
tion with, or sponsorship or endorsement by such owners.

Copyright ©1995 by Wm. C. Brown Communications, Inc.
All rights reserved

A Times Mirror Company

Library of Congress Catalog Card Number: 94-78011

ISBN 0-697-25110-1

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise without the

prior written permission of the publisher.

Printed in the United States of America by Wm. C. Brown Communications, Inc.,
2460 Kerper Boulevard, Dubuque, IA 52001

10987654321

PREFACE

C++ is becoming a dominant programming language for developing today’s computer software
systems. It offers the runtime efficiency and economy of expression of C and adds advanced features
for data abstraction and object-oriented programming. Knowledge of C++ is a valuable asset for any
individual seeking employment in computer programming or systems development. Application
software for modern operating environments and graphical user interfaces is best developed in an
object-oriented fashion; indeed, most of these environments and graphical user interfaces work best
when developed in an object-oriented fashion. Many of these environments have C++ based “appli-
cation frameworks” that insulate the programmer from many of the complicated details that must
be managed by programs designed to run on these systems.

Knowledge of the structure and syntax of the C++ language is useless without well-honed fun-
damental programming skills. The features that have been a part of higher-level procedural pro-
gramming languages for nearly forty years—conditional execution (if statements), loops, array
manipulation, function calls, etc—must still be mastered to do competent object-oriented pro-
gramming in C++. The principles presented in the first seven chapters of this book are not that much
different from the principles presented in an introductory Pascal programming textbook from ten
years ago. The language is different and admittedly offers some additional flexibility, but the under-
lying principles are the same. Pascal does provide a distinct pedagogical advantage over C++; namely,
it was designed to teach the principles of solid structured programming. It imposes certain restric-
tions that C++ does not. It has a more limited way of doing almost everything that C++ can do. These
limitations give a novice programmer fewer opportunities for misusing language features that lead to
errors in programs that are difficult to resolve without knowledgeable assistance. While used quite
successfully in some niches, Pascal is not a popular programming language for commercial software
development, largely due to its label as an educational language. C++, the programmer-friendly lan-
guage, can be intimidating for beginning programmers. It offers fewer safety nets than Pascal. It was
designed to get the job done efficiently and not get in the way of a competent programmer.

Is it possible to teach students with no programming experience how to program using C++?
Why not introduce the students to programming with Pascal (or another similar language) and then
use C++ when advanced concepts are to be addressed? This approach has its merits, but consider
the advantages of using C++ from start to finish:

* Students generally feel most comfortable using the language that they first learned. This applies
to programming languages as well as conversational natural languages. This is not to say that
the second programming language cannot be readily embraced and displace the original lan-
guage as “most favored.” (Indeed, it is almost assured that the strongest advocates for C++ did
not learn how to program using C++, and most likely did not even get started with its prede-
cessor, C.) Students who must eventually develop more advanced programs appreciate not hav-
ing to take the time to learn a language that will be quickly discarded when the “real work”
begins.

* The process of “unlearning” a programming language when confronted with a new language is
nontrivial, especially when the structure of the two languages is similar. Students learning C++
trained in Pascal or Modula-2 (or BASIC for that matter) can become frustrated with minor
differences that consume a lot of time to get right (assignment vs. equality operator, zero-based
array subscripting, use of semicolons). Even though the student may totally understand the pro-
gramming principle involved, these minor syntactical differences can sometimes require hours
in front of the computer to correct.

viii

Preface

e C++ can be introduced in a way that promotes good programming style and sound design prin-
ciples as promoted in Pascal or Modula-2. It takes a bit of work with attention to pointing out
possible pitfalls that the compiler will not detect, but the process is not as difficult as it might
appear. For example, multiple initializations might be possible within a C++ for statement,
but the single counter variable/single initialization approach (required by Pascal) can be pre-
sented as the best way to go.

e When advanced principles such as data abstraction, elementary data structures, and object-ori-
ented programming are introduced, students are not burdened with simultaneously learning a
new language and, possibly, a new development environment. These concepts are difficult
enough without subjecting students to the first point mentioned above.

Nearly every other C++ book assumes that the reader has some prior programming experience.
Most assume a knowledge of C. This book starts at the beginning. The basics of computer hardware
are briefly introduced so that some basic terms, when used in subsequent chapters, will be under-
stood well enough to support the discussion of programming concepts in which they are involved.
After a brief history of C++ and a discussion of some general software development issues, the actual
task of computer programming begins.

The main objectives of this text are outlined below:

* To develop the ability to correctly analyze a variety of problems and generate appropriate algo-
rithmic solutions

* To instill the principles of top-down, structured design when using the procedural program-
ming paradigm

* To introduce the concepts of object-oriented programming

* To explore the syntax and usage of the C++ programming language as a means of accomplish-
ing all of the above objectives.

History shows that it is unrealistic to master a particular programming language with the inten-
tion of using it alone for the rest of one’s programming career (assuming that one’s career exceeds
ten years). It was mentioned that few of today’s C++ programmers learned to program using C++.
(C++ is still a relatively young language, after all.) These programmers had to adapt their existing
skills to a new language. These generic programming skills are much more valuable in the long run
than is complete knowledge of the syntax of C++ with no idea of how to use it productively.
Programming languages come and go; in ten years, C++ will likely be eclipsed by some super post-
object-oriented visual code generator. Despite the differences in the programming paradigms that
evolve over time, all software development requires well-developed logical and sequential reasoning
skills. The problem to be solved must be understood completely, and a plan of attack must be cor-
rectly formulated given the tools at hand. Forty years ago, the tools consisted of computer machine
language, teletypewriter terminals, and little else. Today, graphical user interfaces, higher-level lan-
guages like C++, source code debuggers, visual interface builders, comprehensive class libraries, and
code generators are available to expedite the development process. All of the fancy tools available to
the modern programmer are useless without the underlying problem analysis, organizational, and
logical reasoning skills. As the tools get better, the problems get harder. Relevant software develop-
ment today is just as difficult, or more so, than it was forty years ago.

While a large portion of the book is devoted to explaining C++ syntax and usage, the examples
provide exposure to a variety of problem types that are typically encountered by programmers. Their
programming solutions provide an insight into the problem-solving process. The best way to learn
how to solve problems is to solve problems that are similar to problems whose solutions are known.
Many of the programming assignments found at the end of each chapter are modifications of prob-
lems solved in the chapter or extensions of less demanding assignments from previous chapters.

Preface

This text can be used in several ways. It can be used in a two course sequence in which chap-
ters 1—15 are covered in sequence. The instructor may spend at least part of the first class period
introducing the students to the C++ development environment available. The text assumes no par-
ticular system; the procedure for editing, compiling, copying files, and so forth may be different on
different systems (PC, Macintosh, Windows, Unix, etc.). On a semester schedule, chapters 1-8
could be covered in the first semester; chapters 9-15 would naturally follow in the second semester.
This leaves the discussion of pointers and dynamic memory to the second course. Chapter 15
(Lower-level Programming) is optional, depending on the nature of the course. The table below
contains a course outline based on 16 week semesters.

This book can be used for a second programming course that emphasizes elementary data struc-
tures and introduces abstract data types and object-oriented programming. If the students have had
exposure to C++ or C, the first seven chapters may be reviewed in the first class period or two.
Chapters 8-14 should be covered in detail. Chapter 15 (Lower-level Programming) is optional,
depending on the nature of the class. If the students have no prior knowledge of C++ or C but have
experience with another structured language (like Pascal or Modula-2), then the first seven chapters
should be covered quickly but completely, emphasizing the syntactical deviations that might confuse
experienced programmers unfamiliar with C++ or C. (The students should already know, for exam-
ple, what loops are, how they are entered and exited, and how conditions for termination are
checked; the task is translating that knowledge into the C++ form.)

Semester 1 Semester 2
Week Chapter Topic Week Chapter Topic

1 1 Introduction 1 8 Review, OOP

2 2 Variables, I/0 2 9 Pointers

3 2,3 Expressions, data types 3 9 Dynamic memory
4 3 Binary representations + 10 Self-referential structs
5 4 Relational ops, if 5 10 Linked lists

6 4 More 1ifs, switch 6 10 Recursion

7 5 while,do. . .while 7 11 Class operators

8 5 for, loop termination 8 11 Copy semantics

9 6 Functions 9 11 Templates
10 6 Storage classes 10 12 Stacks, queues

11 7 Arrays 11 13 Trees, BSTs
12 7 Strings 12 13 N-ary trees
13 7 Multidim. arrays 13 14 Inheritance
14 8 Structs 14 14 Polymorphism
15 8 Classes, OOP 15 14,15 Class design
16 8 oor 16 15 Lower-level prog.
17 — Final Examination 17 — Final Examination

Preface

The C++ code presented conforms to the American National Standards Institute (ANSI) base
document as described in The Annotated C++ Reference Manual (commonly referred to as the ARM)
by Margaret Ellis and Bjarne Stroustrup. Presently, a joint ANSI and International Standards
Organization (ISO) committee is working on a C++ language standard. The ARM is the document
that is currently identified as the “standard.” The code herein conforms to AT&T release 3.0 of
C++. (This corresponds to a level of C++ functionality, not to any particular compiler vendor’s C++
version number). Templates are used heavily, beginning in chapter 11. Exception handling (AT&T
release 4.0) is not presented since this feature was not widely available on many popular compilers
at the time of this writing. If a site’s development system supports exception handling, this topic
could be introduced at any time after chapter 6, but it would naturally fit into the topics discussed
in chapters 9 or 11.

Even though a great deal of time is spent examining the syntax and usage of C++, this book is
not meant to be a comprehensive reference for the language. Its primary objective is teaching pro-
gramming, and C++ is merely the medium. There are other books (the ARM, among others listed in
the bibliography) that should be consulted when the limits of the language are to be explored. Unlike
its predecessor C, C++ is a complex language. Indeed, C’s simplicity was a virtue that even its critics
had to concede. The syntactical and semantic structures of C++ are much more elaborate. This added
complexity is mostly due to the advanced object-oriented programming features that were added, but
some of it results from the additional baggage that C++ compilers must bear to insure compatibility
with older C code. The result is that it is much more difficult for an individual to comprehend the
full scope of the language. In this book, the most practical aspects of, for example, inheritance are
covered in chapter 14. Public inheritance is the most popular and is presented with several examples.
One example of private inheritance is also provided, but there are many other options available
through combinations of public, protected, or private inheritance in conjunction with the public,
protected, and private visibility specifications of members of the base class(es). Similarly, pointers to
members, overloading new and delete, function pointers, and other tidbits that can be quite use-
ful in certain situations are omitted to keep the text to a reasonable size.

This book would not exist in its present form without the assistance and understanding of many
individuals. All of the students in my Fundamentals of Programming I and II classes at Southern
College from the Fall of 1987 to present provided inspiration and ideas for this text through all of
their questions, compiler errors, program design woes, innovative and insightful observations, and
brilliant programming achievements. The reviewers of the manuscript provided welcome comments
and criticisms that allowed me to make some sections clearer and fix some technical errors. They
also provided guidance that prompted me to rearrange some of the chapters to produce a better
organized text. Paul Ducham, Linda Meehan Avenarius, and Carrie Langas, editors at B&E Tech,
provided much needed direction. Paul had enough faith in the original manuscript to start the pub-
lishing process. Linda oversaw the review process and helped me shore up its weaknesses to produce
a viable book.

I wish to thank the following reviewers: Barbara Boucher Owens, St. Edward’s University;
Suzanne Sever, Wayne State College; Edward S. Miller, Lewis-Clark State College; Robert A.
McDonald, East Stroudsburg University; William J. Moon, Palm Beach Community College; and
Dr. Wm. C. Muellner, ElImhurst College.

Linden deCarmo, of IBM Corporation, contributed the PowerPC assembly code in chapter 1.

Janet, my lovely wife, served as my immediate proofreader, saving me from countless opportu-
nities for grammatical embarrassment. She, as well as my daughters Jessica and Rachel, endured the
whole process and provided much needed intangible support.

RLH

CONTENTS

Preface vii

1 Introduction to Computer Systems and the Role of C++ in Software Development 1

1.1 Introduction

1.2 Computer Hardware
1.3 Computer Software
1.4 The Story of C++
1.5 C++’s Virtues

1.6 C++’s Pitfalls

2 Variables, Assignment, and Simple I/O 11

2.1 The First C++ Program
2.2 Variables

2.3 Expressions

2.4 Redirection and File Access
2.5 Comments

2.6 Errors

3 Characteristics of C++ Data Types 27

3.1 Introduction to Data Types

3.2 The Integral Types

3.3 The Floating Point Types

3.4 Character Data Type

3.5 Mixed Arithmetic Expressions and Type Casting
3.6 Enumerated Types

4 Conditional Execution 45

4.1 Introduction

4.2 Relational Operators

4.3 Conditional Statements—1 £

4.4 Logical Operators

4.5 Nested 1f Statements and Other i fs within 1 fs
4.6 The switch Statement

4.7 The Conditional Operator

4.8 Formatting Compound Statements

5 Iteration 69

5.1 Introduction

5.2 Iteration

5.3 Infinite Loops

5.4 The for Statement

5.5 Loop Termination: break, continue, goto
5.6 Efficiency in Iteration

5.7 Some Simple Example Programs

5.8 A More Complex Example Program

iv

6 Functions 93
6.1 Introduction
6.2 Parameter Passing and Return Values
6.3 Call-by-value vs. Call-by-reference
6.4 Arrangement of Functions within a Program
6.5 Example of Functional Decomposition
6.6 Function Overloading
6.7 Default Arguments
6.8 Top-down Design
6.9 Standard Library Functions
6.10 Storage Classes

6.11 Inline Functions

7 Arrays and Strings 129
7.1 Introduction
7.2 Array Declarations and Assignment
7.3 Arrays and Functions
7.4 Internal Representation
7.5 Sample Program
7.6 Searching and Sorting
7.7 Strings
7.8 Standard String Routines
7.9 String Example
7.10 Multidimensional Arrays
7.11 Sample Program: Image Processing
7.12 Sample Program: Simple Animation
7.13 File Streams

8 Structs, Classes and Object-Oriented Programming 163
8.1 Introduction
8.2 Structs
8.3 Example: Simple Database
8.4 An Introduction to Object-Oriented Programming
8.5 Classes
8.6 Improved Animation

9 DPointers and Dynamic Memory Management 185
9.1 Introduction to Pointers
9.2 Call-by-reference using Pointers
9.3 Dointers as Arrays and Arrays as Pointers
9.4 Pointer Arithmetic
9.5 Uninitialized Pointers
9.6 String Problems
9.7 Dynamically Allocated Memory
9.8 The const Specifier

Contents

Contents

10

11

12

13

14

15

Linked Lists, Abstract Data Types, and Recursion 211
10.1 Introduction
10.2 Linear Structures—Linked Lists
10.3 Class Constructors and Destructors
10.4 Doubly Linked Lists
10.5 Multiway Lists
10.6 Introduction to Recursion
10.7 Thinking Recursively

Legitimizing ADTs in C++: Class Operators, Copy Semantics, and Generic Types 239
11.1 Introduction
11.2 Class Operators
11.3 Copy Semantics and the Secret Life of C++ Objects
11.4 Generic ADTs: Templates
11.5 Binary Files and Random Access—Tools for Building a Virtual Array Class Template
11.6 Smart Pointers

Stacks and Queues 285
12.1 Motivation
12.2 The Stack ADT
12.3 The Queue ADT

Trees and Graphs 305
13.1 Hierarchical Structures—Trees
13.2 Binary Search Tree Container Class
13.3 Binary Tree Traversal
13.4 Binary Expression Tree Program
13.5 N-ary Trees
13.6 Pseudopointer Tree Representation

13.7 Graphs

Inheritance and Polymorphism 349
14.1 Introduction
14.2 Inheritance
14.3 Extending the St ring Class
14.4 Private Inheritance
14.5 Virtual Functions and True Polymorphism
14.6 Example Program
14.7 Multiple Inheritance
14.8 The Streams Classes

Lower-level Programming 395
15.1 Introduction
15.2 Bitwise Operators
15.3 Bit-fields
15.4 Unions
15.5 Alternate Number Systems

Appendix 415

Index 417

CHAPTER 1

INTRODUCTION TO
COMPUTER SYSTEMS AND
THE ROLE OF C++ IN
SOFTWARE DEVELOPMENT

1.1 INTRODUCTION

A computer is a complex system. Like other complex systems, such as the human body or the
U.S. government, it is composed of smaller systems and components. Computer systems are made
up of two major systems—hardware and software. Each component is useless without the other. This
book is concerned primarily with a particular kind of software development—applications program-
ming. It is, however, impractical to discuss software development without knowledge of the hard-
ware involved. In fact, since we will be writing programs and running these programs on actual
machines, some knowledge of the hardware system is essential. The next section is an overview of
computer hardware. It is far from comprehensive; in fact, it is merely enough to get us started. More
information on the hardware will be provided later as the need arises.

1.2 CoMPUTER HARDWARE

Hardware comprises the parts of the computer that can actually be seen and touched. The inte-
grated circuits (chips), circuit boards, cables, keyboards, monitors, disk drives, etc. are all part of the
hardware system. At the heart of the hardware is the processor or central processing unit (CPU). (See
figure 1.1.)

The processor, or microprocessor in a microcomputer, is a chip (integrated circuit) that is the
“brain” of the computer. The processor controls most of the other hardware. When a micro-
computer is described as a 486 or Pentium machine, the name comes from the particular Intel

Chapter 1

Random Access Memory
(code and data) - I—

! 110
— Device|

Lt il

Register Set |

— 1)

o |
‘ Device | |

A Simplified View of Hardware
Figure 1.1

microprocessor around which the system was built. The Motorola 680x0 and the PowerPC chip are
other examples of microprocessors used within today’s microcomputers. The processor is responsi-
ble for moving data around from one part of the system to another, performing calculations on the
data, and otherwise comparing and modifying the data. (Consider data here to mean some “chunks”
of information.) The processor contains the arithmetic-logic unit (ALU) that performs calculations
and comparisons and the control unit (CU) that sends signals to other parts of the hardware system
controlling their function. The processor also contains a small number of registers that are used to
store data temporarily for calculations. The software that we create will be translated into instruc-
tions for the processor. The programs we write control the computer by controlling the processor.

The processor is connected to the other primary hardware components through a link known
as the bus. At the simplest level, the bus is merely a bunch of parallel wires running between the
processor, memory, input devices, and output devices. Data is passed from an input device to the
processor through the bus. You can think of the bus as an interstate highway system. Devices are
connected to the highway by on and off ramps or “exits.” Data can get from one component to
another by getting on and off at the correct exits.

Memory, sometimes called main memory or RAM (Random Access Memory), is where data are
stored. The programs that we write (translated into processor instructions) are also stored in mem-
ory. Memory is simply a large storage area for data and machine instructions. A computer does all
of its magic by performing some ridiculously simple steps over and over. The processor fetches an
instruction from memory. Based on the particular instruction, it is likely to grab a piece of data from
memory, do something to that datum element, and place it back somewhere (possibly the same

Introduction to Computer Systems 7)) o 3

place) in memory. This is called the “fetch-execute cycle” because the processor fetches an instruc-
tion from memory and then executes that instruction. The instructions that the processor fetches
constitute the computer’s software.

Input and output (1/0) devices are responsible for putting data into memory or retrieving data
from memory. The keyboard is one example of an input device. When you use a wordprocessor or
text editor, the letters you type not only appear on the screen, but also are stored in a particular place
in the computer’s memory. The screen is a type of output device. What is visible on the screen cor-
responds in some way to data stored in memory. Disk drives allow information to be both stored
and retrieved from memory. The diskette and fixed disk (hard disk) are also known as secondary
memory or secondary storage. Data can be stored on a diskette as in the computer’s main memory;
however, the data in main memory are lost when the power is removed to the computer. Data stored
on diskette remain until erased or overwritten. Other 1/O devices include mice, printers, trackballs,
joysticks, and so forth.

1.3 COMPUTER SOFTWARE

As mentioned, software controls the processor, which in turn controls the rest of the computer
system. Without hardware, obviously, you could not have a computer; however, without software,
you would have a computer that could do nothing. The processor would be unable to communi-
cate with memory or I/O devices.

Software can be categorized as systems software and applications software. An operating system
(OS) is a sophisticated piece of systems software that oversees the whole computer system. On a per-
sonal computer, DOS (Disk Operating System) is an OS that is often used. Other choices include
IBM’s OS/2 and Microsoft’s Windows NT. Unix and the Macintosh System 7 are other popular
OSs. The OS directs the processor’s communication with the other hardware components. It is the
platform upon which the other type of software, applications software (programs), may be executed.

To better understand how systems software and the OS work, consider what happens when the
computer is turned on. Recall that the hardware can do nothing without software; all the processor
can do is “fetch and execute.” Upon power-up, the processor is in a reset condition; it immediately
looks to a particular place in memory for an instruction to execute. It is built to look in a part of
memory known as ROM (Read-Only Memory). ROM is a small part of memory with two special
characteristics—it cannot be modified (unlike the memory mentioned above, RAM, where data and
programs are stored), and it is not erased when the power is off (otherwise the computer could not
start itself up the next time). The ROM contains the instructions for the processor to check the
other hardware (memory, I/O devices, etc.) and load the OS into memory from disk. Once the OS
is in memory, the processor follows the instructions dictated by the OS. On a PC under DOS, this
same start-up sequence occurs but may look different on the screens of computers from different
manufacturers since different ROMs may be used (Phoenix, Award, AMI, and others all make
ROM-BIOS memories for PC compatibles). A DOS program called command . com (among oth-
ers) is loaded into memory. The job of command. com is to interpret commands typed in from
the keyboard.

Applications software consists of the programs that take advantage of the hardware and OS
facilities. Applications software include wordprocessors, spreadsheets, databases, games, drawing
programs, and just about every program you can think of. The C++ programs that are examined in
this text are examples of applications software. Applications programs are typically easier to write
than systems programs. Usually, the programmer does not have to worry about the details of how
to access the I/O devices or memory. Programs are written that correspond to some real world prob-
lem, such as balancing a checkbook or simulating a game of tennis. The computer is simply a
medium for solving these problems.

*

¥
(|

Chapter

[| -

An algorithm is a finite sequence of well-understood steps that are followed to solve a particu-
lar problem or produce a particular result. For example, in a crude sense, a cake recipe is an algo-
rithm for the production of a cake. There is a starting point—step 1 in the recipe. Following the
recipe consists of performing a series of individual, simple, sequential (do this, then that—order is
important) instructions that culminate at the stopping point—the finished cake. The technical defi-
nition of an algorithm is a bit more refined, but the essential principles are illustrated in the recipe
example. An algorithm is a finite set of operations that must be performed in a particular sequence.
Each operation must be well defined (that is, unambiguous), and each operation also must be able
to be performed in a finite length of time. An algorithm must have a definite stopping place.

An algorithm is used in algebra to find the equation of the line (in the useful slope-intercept
form) that passes between two points (x,,y,) and (x,y,).

1. Find the slope, , of the line passing through the points
J2~" N

m=——""

X9 — 9
2. Use the slope and one of the points in the point-slope form for the equation of a line
Y=y, =mx—x)
3. Solve for y (add y, to both sides)
y=mlx—x)+y,
4. Distribute 7 to find & (the slope intercept)
y=mx—mx, + 3y, b=y — mx

A program is an algorithm that has been implemented in a particular programming language.
Programs can be written using many different computer languages. Assembly language offers absolute
control over the processor because its instructions are converted directly into machine language—
the instructions that the processor executes. It is difficult to develop programs in assembly language;
the programmer must take care of all the details; namely, where values are to be placed in memory,
how those values are to be manipulated with only very rudimentary operations possible, and so
forth. Initially, assembly language was the only language available. It is called a low-level language.
To solve problems in assembly language, not only must the programmer completely understand the
problem at hand, but he or she must also have a good understanding of the inner workings of the
MiCroprocessor.

In the late 1950s, higher-level languages began to appear. These languages (FORTRAN is the
oldest still in wide use) allowed the programmer to write programs in a form closer to human lan-
guage. Human languages (English, French, Spanish, Japanese, etc.) are inherently flexible and often
ambiguous, but higher-level computer languages are quite rigid in their form and composition rules.
Nonetheless, higher-level languages remove much of the drudgery associated with assembly lan-
guage programming. Consider figure 1.2 comparing a section of C++ code to its equivalent assem-
bly code for two different CPUs. (The word code used in the context of programming has both a
noun and verb form. The noun refers to programs or sections of a program written in a particular
programming language; thus, a C++ programmer writes in C++ code which is eventually translated
into low-level machine language code. The act of programming is sometimes called coding.)

Both assembly language code sequences were adapted from the assembler output from C++
compilers designed specifically for each system. Whereas the C++ code is the same for both systems,
the actual machine language code is very different. The 80x86 code is for a complex instruction set
computer (CISC) processor. CISC processors contain many different machine language instructions
in their set of usable instructions. The PowerPC is a reduced instruction set computer (RISC). RISC

Introduction to Computer Systems _ 5

_SUM_LIST: - ..LL33: int sum_list(int list[], int
PUSH BP .globl sum size)
MOV BP,SP sum: {
PUSH SI ori %r10,%r3,0 int index = 0, sum = 0;
PUSH DI addi %$r9,%r0,0
XOR SI,SI addi %$r3,%r0,0 while (index < size) {
XOR DI,DI cmp 0,%r9,%r4d sum = sum +
JMP SL2 bge ..LL34 list[index];

SL1: ..LL35: index = index + 1;
MOV AX,SI mulli %$rl2,%r9,4 }
SHL AX,1 lwzx return sum;
LES $rl2,%rl2,%rl0 }

BX, [BP+06] addc %r3,%rl2,%r3
ADD BX,AX addic %r9,%r9,1
MOV AX,DI cmp 0,%r9,%r4
ADD blt ..LL35

AX,ES: [BX] .. LL34:
MOV DI, AX bclr 20,0
MOV AX,SI
INC AX
MOV SI,AX

SL2:
CMP

SI, [BP+0A]
JL SL1
MOV AX,DI
POP DI
POP ST
POP BP
RETF

Intel 80X86 Assembly PowerPC Assembly Language C++ Language
Language

Assembly Language vs. C++
Figure 1.2

machines employ a small number of highly optimized instructions to attempt to achieve greater
processing speed. Higher-level languages, which are easier to use due to their proximity to natural
languages and mathematical expression, provide another, perhaps more important, advantage. A
program written in C++ can easily be adapted to execute on any computer system (PC, Macintosh,
DEC VAX minicomputer, IBM mainframe, etc.); however, an assembly language program written
for one kind of machine would need to be completely rewritten to work on a different kind of
machine. 1486 assembly language (PC) is much different from either 68040 (Macintosh) or
PowerPC (Macintosh) assembly languages. (This fact should not be minimized—some programs
require years of development by scores of programmers.) Higher-level languages include C++, C,
BASIC, Pascal, FORTRAN, COBOL, Ada, Modula-2, Lisp, and Prolog.

Since the processor only understands its own machine language and cannot interpret any
higher-level language, all higher-level languages must be translated into the machine language of
the particular processor. A special program called a compiler converts the higher-level program text

6 Chapter 1

r* 7 \ (Ed it) ‘ Hinclude <iostream h>

[vmd main()
|

ml x = 10,

T — Editor —> st

v cin>> x;

| [\
, C++ source code
Programmer’s concept

of algorithm Compller o
???31’8181‘8
o ! p//e 0011100011
| ooy | INNAE:

1111100001

' 1110001011 X 0000010000
\ 0101110000 |\ » 1100110010 |
: 1101010101 | 1010000101
| 1000100110 | S B
¥ Ormosnny || achme Ianguage
v — object code
: i Linker

1
| | 1011000111 | -
| 1111101101 !
' 0000101011 I (Link) (1,8}2,11%11};%11
v 1101011001) 1110111111
: 0001010001 i 0101001100
, 0001110000 \ 0010100101
1 0101100110 | 1111110000 ‘
1 0011111001 | 0000000110
1 : 0101001110
L QS ey
Machine language Machine language
library object files executable program

Development Sequence
Figure 1.3

into machine language. Figure 1.3 illustrates the development process. The C++ language source
code is typed in with an editor (a program that works like a simplified wordprocessor) and stored
in a file. Different systems use different naming conventions. Throughout this text we will assume
that the C++ source files are named with a . cpp extension. Some development environments pre-
fer .C, .c, .CXX, .cxx, or perhaps some other filename extension. The compiled machine lan-
guage code file, here given an . obj extension, may instead use . 0. The executable program file is
here assumed to have an . exe extension, but other systems may have other preferences (or none
at all). Some systems, like Unix, distinguish between upper- and lowercase (capitalized and uncap-
italized) characters in file names. Some systems, like DOS, treat both the same. All references to file-
names in this book will be of the form filename.ext in all lowercase (uncapitalized) small font.

Exercises

1. Define the following terms: ALU, compiler, hardware, software, bus, input, output, algorithm, higher-level
language, RAM, ROM, code, and operating system.

@ List the steps in the translation of a C++ program into a computer’s native machine language.

Introduction to Computer Systems 7

3. What are the major components in any computer system?

4, How is a higher-level computer programming language different from a lower-level computer pro-
gramming language?

5. List some examples of applications software. List some examples of systems software.

6. 'What commands must you follow on your system to invoke the (1) editor, (2) compiler, and (3) the
linker?

7. What filename extension for C++ source programs is preferred by your development environment?

1.4 THE STORY OF C++

C++ is an extension of C, a higher-level computer language developed by Dennis Ritchie in the
early 1970s at AT&T Bell Laboratories. C++’s genealogy is shown in figure 1.4. C was first designed
to run on a PDP-11 minicomputer. The C language made possible the implementation of the Unix
operating system as it is known today. More than 90 percent of Unix was written in C (the remain-
der was written in assembly language). By the late 1970s, C began to gain widespread popularity
and support and became available for commercial use outside of AT&T Bell Labs.

BCPL
Martin Richards
1969

1

Ken Thompson
1970

L

Simula c Algol68
Dahl and Nygaard Dennis Ritchie 1974
1967 1972 —
) —X B cLu
ML \ 7 1978
1975 ‘ \ P 4 |
|
‘ ~ - \ s _ - - ~ _
= =S - \ . 7 _ - B
~._ 4 e A
5 c - Ada
iaine Sip i — — — = USDoD
Bjarne Stroustrup '~ | L = = — = 983
1983 < - - -

C++'s Family Tree
Figure 1.4

