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Complex Webs

Complex Webs synthesizes modern mathematical developments with a broad range of
complex network applications of interest to the engineer and system scientist, presenting
the common principles, algorithms, and tools governing network behavior, dynamics,
and complexity. The authors investigate multiple mathematical approaches to inverse
power laws and expose the myth of normal statistics to describe natural and man-made
networks. Richly illustrated throughout with real-world examples including cell phone
use, accessing the Internet, failure of power grids, measures of health and disease, distri-
bution of wealth, and many other familiar phenomena from physiology, bioengineering,
biophysics, and informational and social networks, this book makes thought-provoking
reading. With explanations of phenomena, diagrams, end-of-chapter problems, and
worked examples, it is ideal for advanced undergraduate and graduate students in engi-
neering and the life, social, and physical sciences. It is also a perfect introduction for
researchers who are interested in this exciting new way of viewing dynamic networks.

BRUCE J. WEST is Chief Scientist Mathematics with the Information Science Directorate
at the Army Research Office, a position he has held for the last 10 years. After receiv-
ing his Ph.D. in Physics from the University of Rochester in 1970, he was Associate
Director of a small private research institute (La Jolla Institute) for almost 20 years and
a Professor at the University of North Texas for a decade. His research interests are in
the nonlinear dynamics of complex networks. He has over 350 scientific publications,
including 11 books and 8,500 citations, and he has received multiple academic and
government awards for his research and publications.

PAOLO GRIGOLINI is currently a Professor in the Physics Department and the Center for
Nonlinear Science at the University of North Texas. He is an internationally recognized
theorist interested in the foundations of quantum mechanics, including wave-function
collapse and the influence of classical chaos on quantum systems. His other research
interests include the foundations of statistical physics, biophysical problems such as
DNA sequencing, and the network science of human decision making and cognition.



Preface

The Italian engineer turned social scientist Vilfredo Pareto was the first investigator to
determine that the income in western society followed a law that was fundamentally
unfair. He was not making a value judgement about the poor and uneducated or about
the rich and pampered; rather, he was interpreting the empirical finding that in 1894
the distribution of income in western societies was not “normal,” but instead the num-
ber of people with a given income decreased as a power of the level of income. On
bi-logarithmic graph paper this income distribution graphs as a straight-line segment
of negative slope and is called an inverse power law. He interpreted his findings as
meaning that a stable society has an intrinsic imbalance resulting from its complex
nature, with the wealthy having a disproportionate fraction of the available wealth.
Since then staggeringly many phenomena from biology, botany, economics, medicine,
physics, physiology, psychology, in short every traditional discipline, have been found
to involve complex phenomena that manifest inverse power-law behavior. These empir-
ical laws were explained in the last half of the twentieth century as resulting from the
complexity of the underlying phenomena.

As the twentieth century closed and the twenty-first century opened, a new under-
standing of the empirical inverse power laws emerged. This new understanding was
based on the connectedness of the elements within the underlying phenomena and the
supporting web structure. The idea of networks became pervasive as attention was
drawn to society’s reliance on sewers and the electric grid, cell phones and the Inter-
net, banks and global stock markets, roads and rail lines, and the multitude of other
human-engineered webbings that interconnect and support society. In parallel with the
studies of social phenomena came new insight into the distribution in size and fre-
quency of earthquakes and volcanic eruptions, global temperature anomalies and solar
flares, river tributaries and a variety of other natural phenomena that have eluded exact
description by the physical sciences. Moreover, the inverse power laws cropped up in
unexpected places such as in heart rates, stride intervals and breathing, letter writing and
emails, cities and wars, heart attacks and strokes; the inverse power law is apparently
ubiquitous.

The synthesis of complexity and networks emphasizes the need for a new kind of
scientific understanding, namely a grasp of how things work that exceeds the traditional
mechanistic approach taken by science ever since Newton introduced gravity to explain
planetary orbits and why things fall. The historical scientific approach reveals the work-
ings of the two-body problem, but when three or more bodies interact in this way the
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strategy breaks down; chaos typically takes over and a different kind of thinking is
required. This book is about how this new way of thinking has struggled to overcome
the shackles of the “normal” distribution and the domination of the mean and standard
deviation within the traditional disciplines.

The final result of our studies, ruminations and collaborations is not a standard text-
book, although there are extended explanations of phenomena, diagrams, problems
and worked-out examples. Instead this book has many characteristics associated with
more idiosyncratic monographs; including well-labeled speculations, arguments that
are meant to provoke response and stimulate thinking, and connections made to modern
research discoveries that are usually denied to elementary texts. We have labored to get
the mathematics right while not disregarding the language and the spirit of scientific
discovery that is usually scrubbed from more traditional texts.

A number of people assisted us in preparing the present book. Gerhard Werner con-
tributed directly by reading a draft of the manuscript and providing extensive feedback
on how to improve its readability, suggestions that we took seriously. Our past students
and present collaborators have contributed less directly to the manuscript and more
directly to the research on which various sections of the book are based. The contri-
butions of P. Allegrini, G. Aquino, F. Barbi, M. Bianucci, M. Bologna, M. Ignaccolo,
M. Latka, A. Rocco and N. Scafetta are extensively referenced throughout, indicat-
ing their contributions to our fundamental theoretical understanding of the ubiquity of
empirical inverse power-law distributions in complex webs.
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1.1

The science of complex webs, also known as network science, is an exciting area of
contemporary research, overarching the traditional scientific disciplines of biology,
economics, physics, sociology and the other compartments of knowledge found in
any college catalog. The transportation grids of planes, highways and railroads, the
economic meshes of global finance and stock markets, the social webs of terrorism,
governments, and businesses as well as churches, mosques, and synagogs, the physical
lattices of telephones, the Internet, earthquakes, and global warming, in addition to the
biological networks of gene regulation, the human body, clusters of neurons and food
webs, share a number of apparently universal properties as the webs become increas-
ingly complex. This conclusion is shared by the recent report Network Science [23]
published under the auspices of the National Academy of Science. The terms networks
and network science have become popular tags for these various areas of investigation,
but we prefer the image of a web rather than the abstraction of a network, so we use
the term web more often than the synonyms network, mesh, net, lattice, grille or fret.
Colloquially, the term web entails the notion of entanglement that the name network
does not share. Perhaps it is just the idea of the spider ensnaring its prey that appeals to
our darker sides.

Whatever the intellectual material is called, this book is not about the research that
has been done to understand complex webs, at least not in the sense of a monograph.
We have attempted to put selected portions of that research into a pedagogic and often
informal context, one that highlights the limitations of the more traditional descriptions
of these areas. In this regard we are obligated to discuss the state of the art regarding a
broad sweep of complex phenomena from a variety of academic disciplines. Sometimes
properly setting the stage requires a historical approach and other times the historical
view is replaced with personal perspectives, but with either approach we do not leave the
reader alone to make sense of what can be difficult material. So we begin by illuminating
the basic assumptions that often go unexamined in science.

The myth of normalcy

Natural philosophers metamorphosed into modern scientists in part by developing a
passion for the quantifiable. But this belief in the virtue of numbers did not come about
easily. In the time of Galileo Galilei (1564—1642), who was followed on his death by
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the birth of Sir Isaac Newton (1642—-1727), experiments did not yield the kind of repro-
ducible results we are accustomed to accepting today. Every freshman physics course
has a laboratory experiment on measurement error that is intended to make students
familiar with the fact that experiments are never exactly reproducible; there is always
experimental error. But this pedagogic exercise is quickly forgotten, even when well
learned. What is lost in the student’s adjustment to college culture is that this is proba-
bly the most important experiment done during that first year. The implications of the
uncertainty in scientific investigation extend far beyond the physics laboratory and are
worthy of comments regarding their significance.

Most people recognize that they do not completely control their lives; whether it is
the uncertainty in the economy and how it will affect a job, the unexpected illness that
disrupts the planned vacation, or the death of one near and dear, all these things are
beyond one’s control. But there is solace in the belief, born of the industrial revolution,
that we can control our destiny if only we had enough money, or sufficient prestige
and, most recently, if we had an adequate amount of information. This is the legacy of
science from the nineteenth and twentieth centuries, that the world can be controlled if
only we more completely understood and could activate the levers of power. But is this
true? Can we transfer the ideas of predictability and controllability from science to our
everyday lives? Do the human sciences of sociology and psychology have laws in the
same way that physics does?

In order to answer these and other similar questions it is necessary to understand how
scientists have traditionally treated variability and uncertainty in the physical sciences.
We begin with a focus on the physical sciences because physics was historically the first
to develop the notion of quantification of physical laws and to construct the underlying
mathematical infrastructure that enabled the physicist to view one physical phenomenon
after another through the same lens and thereby achieve a fundamental level of under-
standing. One example of this unity of perspective is the atomic theory of matter, which
enables us to explain much of what we see in the world, from the sun on our face to the
rain wetting our clothes or the rainbow on the horizon, all from the same point of view.
But the details are not so readily available.

We cannot predict exactly when a rain shower will begin, how long it will last, or how
much ground it will cover. We might understand the basic phenomenon at the micro-
scopic level and predict exactly the size and properties of molecules, but that does not
establish the same level of certainty at the macroscopic level where water molecules
fall as rain. The smallest seemingly unimportant microscopic variation is amplified by
means of nonlinear interactions into a macroscopic uncertainty that is completely unpre-
dictable. Therefore it appears to us that in order to develop defenses against the vagaries
of life it is necessary to understand how science treats uncertainty and explore the limi-
tations of those treatments. Most importantly, it is necessary to understand what science
got right and what it got wrong. For that we go back to the freshman physics laboratory
experiment on measurements.

Each time a measurement is made a certain amount of estimation is required, whether
it is estimating the markings on a ruler or the alignment of a pointer on some gauge. If
one measures a quantity g a given number of times, N say, then instead of having a
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single quantity Q the measurements yield a collection of quantities Q1, Q2, ..., On.
Such a collection is often called an ensemble and the challenge is to establish the best
representation of the ensemble of measurements. Simpson, of “Simpson’s rule” fame in
the calculus, was the first scientist to recommend in print [30] that all the measurements
taken in an experiment ought to be utilized in the determination of a quantity, not just
those considered to be the most reliable, as was the custom in the seventeenth century.
He was the first to recognize that the observed discrepancies between successively mea-
sured events follow a pattern that is characteristic of the ensemble of measurements. His
observations were the forerunner to the law of frequency of errors, which asserts that
there exists a relationship between the magnitude of an error and how many times it
occurs in an ensemble of experimental results. Of course, the notion of an error implies
that there is an exact value that the measurement is attempting to discern and that the
variability in the data is a consequence of mistakes being made, resulting in deviations
from the exact value, that is, in errors.

This notion of a correct value is an intriguing one in that it makes an implicit assump-
tion about the nature of the world. Judges do not allow questions of the form “Have you
stopped beating your wife?” because implicit in the question is the idea that the person
had beaten his wife in the past. Therefore either answer, yes or no, confirms that the
prisoner has beaten his wife in the past, which is, presumably, the question to be deter-
mined. Such leading questions are disallowed from the courtroom but are the bread and
butter of science. Scientists are clever people and consequently they have raised the
leading question to the level of hypothesis and turned the tables on their critics by ask-
ing “Have you measured the best value of this experimentally observed phenomenon?”
Of course, either answer reinforces the idea of a best value. So what is this mysterious
best value?

To answer this question we need to distinguish between statistics and probability;
statistics has to do with measurements and data, whereas probability has to do with the
mathematical theory of those measurements. Statistics arise because on the one hand
individual results of experiments change in unpredictable ways and, on the other hand,
the average values of long data sequences show remarkable stability. It is this statistical
regularity that suggests the existence of a best value and hints at a mathematical model
of the body of empirical data [8]. We point this out because it is not difficult to become
confused over meaning in a discussion on the probability associated with a statistical
process. The probability is a mathematical construct intended to represent the manner
in which the fluctuating data are distributed over the range of possible values. Statistics
represent the real world; probability represents one possible abstraction of that world
that attempts to make quantitative deductions from the statistics. The novice should take
note that the definition of probability is not universally accepted by the mathematical
community. One camp interprets probability theory as a theory of degrees of reason-
able belief and is completely disassociated from statistics in that a probability can be
associated with any proposition, even one that is not reproducible. The second camp,
with various degrees of subtlety, interprets probability theory in terms of the relative fre-
quency of the occurrence of an event out of the universe of possible events. This second
definition of probability is the one used throughout science and is adopted below.



Consider the relative number of times N; a measurement error of a given magnitude
occurs in a population of a given (large) size N; the relative frequency of occurrence of
any particular error in this population is

Nj

Here j indexes the above measurements into M different bins, where typically N > M.
The relative number of occurrences provides an estimate of the probability that a
measurement of this size will occur in further experiments. From this ensemble of
N independent measurements we can define an average value,

M
§=ZQI‘P]~ (1.2)

J=1

with the average of a variable being denoted by the overbar and the N measurements
put into M bins of equal size. The mean value Q is often thought to be an adequate char-
acterization of the measurement and thus an operational definition of the experimental
variable is associated with Q. Simpson was the first to suggest that the mean value be
accepted as the best value for the measured quantity. He further proposed that an isosce-
les triangle be used to represent the theoretical distribution in the measurements around
the mean value. Of course, we now know that using the isosceles triangle as a measure
of variability is wrong, but don’t judge Simpson too harshly, after all, he was willing to
put his reputation on the line and speculate on the possible solution to a very difficult
scientific problem in his time and he got the principle right even if he got the equation
wrong.

Subsequently, it was accepted that to be more quantitative one should examine
the degree of variation of the measured value away from its average or “true” value. The
magnitude of this variation is defined not by Simpson’s isosceles triangles but by the
standard deviation o or the variance o of the measurements,

M ——)
o= (Qj — 0) ;. (1.3)
j=1

which, using the definition of the average and the normalization condition for the
probability

dopi=1, (1.4)

reduces to

2_7/2_ 72
o =02-0". (1.5)

These equations are probably the most famous in statistics and form the basis of vir-
tually every empirical theory of the physical, social and life sciences that uses discrete
data sets.
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The dots denote the relative frequency of the heights of adult males in the British Isles [41]. The
solid curve is the normal distribution with the same mean and variance as that of the data points.

In the continuum limit, that is, the limit in which the number of independent observa-
tions of a web variable approaches infinity, the characteristics of any measured quantity
are specified by means of a distribution function. From this perspective any particular
measurement has little or no meaning in itself; only the collection of measurements, the
ensemble, has a scientific interpretation that is manifest through the distribution func-
tion. The distribution function is also called the probability density and it associates a
probability with the occurrence of an event in the neighborhood of a measurement of a
given size. For example in Figure 1.1 is depicted the frequency of occurrence of adult
males of a given height in the general population of the British Isles. From this distribu-
tion it is clear that the likelihood of encountering a male six feet in height on your trip
to Britain is substantial and the probability of meeting someone more than ten feet tall
is zero.

Quantitatively, the probability of meeting someone with a height Q in the interval
(g.q + Aq) is given by the product of the distribution function and the size of the
interval P(g)Aq. The solid curve in Figure 1.1 is given by a mathematical expression
for the functional form of P(g). Such a bell-shaped curve, whether from measurements
of heights or from errors, is described by the well-known distribution of Gauss, and is
also known as the normal distribution.

Half a century after Simpson’s work the polymath Johann Carl Friedrich Gauss
(1777-1855) [12] systematically investigated the properties of measurement errors and
in so doing set the course of experimental science for the next two centuries. Gauss pos-
tulated that if each observation in a sequence of measurements Q, Q,, .... Qj, ...,
QO n was truly independent of all of the others then the deviation from the average value
is a random variable

£i=0;— 0, (1.6)

so that &§; and & are statistically independent of one another if j # k. This definition
has the virtue of defining the average error in the measurement process to be zero,
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N
E=) gp =0, (1.7)
j=l

implying that the average value is the best representation of the data. Gauss determined
that the variance defined by (1.3) in terms of the error (1.6) takes the form

N
GZEZS}]]]' (1.8)
=l

and can be used to measure how well the average characterizes the ensemble of mea-
surements. Note that it is not necessary to introduce p; for the following argument and,
although its introduction would not change the presentation in any substantial way, the
discussion is somewhat simpler without it.

Gauss used the statistical independence of the measured quantities to prove that the
average value gave their best representation and that, with a couple of physically rea-
sonable assumptions, the associated statistical distribution was normal, an unfortunate
name that had not been introduced at that time. We present a modified version of his
arguments here to lay bare the requirements of normalcy. The probability / of obtaining
a value in the interval (Q, Q + A Q) in any measurement is given by

I'=P(Q)AQ (1.9)

and in a sequence of N measurements the data are replaced with the deviations from the
average, that is, by the errors &;, ..., &y, allowing us to segment the range of values
into N intervals,

P(§)A§; = probability of observing the deviation &;. (1.10)

In (1.10) the probability of making the N independent measurements in the ensemble
together with the property that the probability of the occurrence of any two independent
events is given by the product of their individual probabilities, and assuming A§; = A&
forall j, is

N
I= HP(EJ-)AEJ- = P(E)P&)... P(En)AEN. (1.11)
j=I
According to Gauss the estimation of the value for Q appears plausible if the ensemble
of measurements resulting in Q is the most probable. Thus, Q is determined in such
a way that the probability / is a maximum for Q = Q. To determine this form of the
probability density we impose the condition

dinl
"o (1.12)
dQ
and use (1.11) to obtain
dln]_idé;‘j dni ZN:alnP(Ej) -
dQ dQ 0§ 0E; '
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where we have used the fact that
T
dQ
for all j. The constraint (1.12) applied to (1.13) is the mathematical rendition of the
desirability of having the average value as the most probable value of the measured
variable.
We now solve (1.13) subject to the constraint

N
Y& =0 (1.14)
j=1

by assuming that the jth derivative of the logarithm of the probability density can be
expanded as a polynomial in the random error

an P (
. s’ ZC&‘" (1.15)

where the set of constants {C}} is determined by the equation of constraint

N o
- ZZCksj’f =0. (1.16)

j=1k=0

All the coefficients in (1.16) vanish except k = 1, since by definition the fluctuations
satisfy the constraint equation (1.14) so the coefficient C; # 0 satisfies the constraint.
Thus, we obtain the equation for the probability density

dln P(&;)
— = 1§y, 1.17
8&‘1 IE_/ ( )
which integrates to
C
P(Ej)ocexp(%ff). (1.18)

The first thing to notice about this solution is that its extreme value occurs at £; = 0, that
is,at Q; = Q as required. For this to be a maximum as Gauss required and Simpson
speculated, the constant must be negative, C; < 0, so that the second derivative of P at
the extremum is positive. With a negative constant the function decreases symmetrically
to zero on either side, allowing the function to be normalized,

/ P(§j)dEj =1, (1.19)

o0

and because of this normalization the function can be interpreted as a probability
density. Moreover, we can calculate the variance to be

oo
a}=/ £7P(&))dEj, (1.20)
—0Q

allowing us to express the normalized probability density as



