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Preface

The design and analysis of trading agents and electronic trading systems in which
they are deployed involve finding solutions to a diverse set of problems, involv-
ing individual behaviors, interaction, and collective behavior in the context of
trade. A wide variety of trading scenarios and systems, and agent approaches to
these, have been studied in recent years. The present volume includes a number
of papers that were presented as part of the Joint International Workshop on
Trading Agent Design and Analysis and Agent-Mediated Electronic Commerce
which was collocated with the Autonomous Agents and Multi-agent Systems
(AAMAS) Conference in Hakodate, Japan, in May 2006.

The Joint TADA/AMEC Workshop brought together the two successful and
well-established events of the Trading Agent Design and Analysis (TADA) and
Agent-Mediated Electronic Commerce (AMEC) Workshops. The TADA series
of workshops serves as a forum for presenting work on trading agent design
and technologies, theoretical and empirical evaluation of strategies in complex
trading scenarios as well as mechanism design. TADA also serves as the main
forum for the Trading Agent Competition (TAC) research community. TAC is
an annual tournament whose purpose is to stimulate research in trading agents
and market mechanisms by providing a platform for agents competing in well-
defined market scenarios (http://www.sics.se/tac). The AMEC series of work-
shops presents interdisciplinary research on both theoretical and practical issues
of agent-mediated electronic commerce ranging from the design of electronic
marketplaces and efficient protocols to behavioral aspects of agents operating in
such environments. The merging of the two workshops was a unique opportunity
for researchers working in agents and multi-agent systems, artificial intelligence,
operational research, economics and game theory to explore issues pertinent to
the development of agent-populated electronic markets. The collection of papers
in this volume provides a glimpse into this wide field of research.

The papers presented at the workshop contribute to the theory and practice
of agent-based electronic trade and commerce addressing both the agent level
and the system level. The papers presented included work directly related to
TAC, work related to generic markets and trading scenarios, theoretical and
experimental studies, automated negotiation, market mechanism design as well
as strategy design.

We hope that this collection of papers will be a useful resource for researchers,
practitioners and students working in automated trading and electronic market-
places.

March 2007 Maria Fasli
Onn Shehory
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Evolutionary Optimization of ZIP60:
A Controlled Explosion in Hyperspace

Dave Cliff

Foreign Exchange Complex Risk Group, Deutsche Bank
1 Great Winchester Street, London EC2N 2DB
dave.cliff@bcs.org

Abstract. The “ZIP” adaptive trading algorithm has been demonstrated to out-
perform human traders in experimental studies of continuous double auction
(CDA) markets. The original ZIP algorithm requires the values of eight control
parameters to be set correctly. A new extension of the ZIP algorithm, called
ZIP60, requires the values of 60 parameters to be set correctly. ZIP60 is shown
here to produce significantly better results than the original ZIP (called “ZIP8”
hereafter), for negligable additional computational costs. A genetic algorithm
(GA) is used to search the 60-dimensional ZIP60 parameter space, and it finds
parameter vectors that yield ZIP60 traders with mean scores significantly better
than those of ZIP8s. This paper shows that the optimizing evolutionary search
works best when the GA itself controls the dimensionality of the search-space,
so that the search commences in an 8-d space and thereafter the dimensionality
of the search-space is gradually increased by the GA until it is exploring a 60-d
space. Furthermore, the results from ZIP60 cast some doubt on prior ZIP8 re-
sults concerning the evolution of new ‘hybrid’ auction mechanisms that ap-
peared to be better than the CDA.

1 Introduction

The Zero-Intelligence Plus (ZIP) adaptive automated trading algorithm [6] has been
demonstrated to outperform human traders in experimental studies of continuous
double auction (CDA) markets populated by mixtures of human and “robot” traders
[15]. To successfully populate a market with ZIP traders, the values of eight real-val-
ued control parameters need to be set correctly. While these eight values can of course
be set manually, previous papers have demonstrated that this 8-d parameter-value
vector can be automatically optimized using a simple genetic algorithm (GA) search
to tailor ZIP traders to particular markets, thereby producing results superior to those
from ZIP traders with manually-set parameter values [7, 8]. Furthermore, a simple
extension of the GA-ZIP approach (i.e., adding a single additional real-valued nu-
meric parameter, its value set by the GA) allows for automated market-mechanism
design, and has been demonstrated as a possible way of automatically discovering
novel “hybrid” forms of auction mechanism that appear to be more efficient than the
CDA [10, 11, 12]. This paper introduces a more sophisticated version of the ZIP algo-
rithm, which is shown to produce significantly better results. The extended variant is
known as “ZIP60”, because it requires 60 real-valued control parameters to be set

M. Fasli and O. Shehory (Eds.): TADA/AMEC 2006, LNAI 4452, pp. 1-16, 2007.
© Springer-Verlag Berlin Heidelberg 2007



2 D. Cliff

correctly, and thus the original algorithm is now re-named as “ZIP8”. Manually iden-
tifying the correct values for 60 control parameters could be a very laborious task, but
it is demonstrated here that an appropriate automatic search or optimization process
(such as a GA) can reliably discover good sets of values for the parameters, so long as
some care is exercised in controlling a gradual expansion of the dimensionality of the
search-space. The GA operating in the 60-dimensional parameter space is shown to
produce markets populated by ZIP60 traders with mean scores significantly better
than those of ZIP8s. Moreover, the ZIP60 results presented in this paper, while better
than ZIP8, show a markedly reduced incidence of cases where the GA also discovers
novel hybrid auction mechanisms within which the ZIP traders perform significantly
better than when they interact within the fixed CDA mechanism. A plausible conclu-
sion drawn from this is that it indicates that the earlier ZIP8 results (where apparent
“improvements” on the CDA were common) were actually consequences of the rela-
tive lack of sophistication in the ZIP8 algorithm, rather than consequences of previ-
ously-undiscovered weaknesses in the CDA mechanism that the ZIP8 traders were
operating within.

In the interests of scientific openness and ease of replicability, the C source-code
that was used to generate the ZIP60 results in this paper has been published in a
technical report freely available on the web [13].

This paper reports on an ongoing line of research, and there are several open
avenues of research that could be pursued to extend or further explore the ideas
presented here. In particular, it is important to note that the results in this paper are
certainly not intended as an absolute and conclusive demonstration that ZIP60 is
superior to all other CDA bidding algorithms, or that the solutions discovered by the
GA are optimal in the sense of the GA routinely discovering Nash equilibria in the
experimental markets that ZIP60 is studied within here. This paper studies the
equilibrating performance of markets that are homogeneously populated with one
type of trader-agent, in the style of frequently-cited prior work such as that by Gode
& Sunder [20], CIiff [6, 9, 12], Preist & van Tol [30], and Gjerstad & Dickhaut [19];
rather than studying strategic interactions within markets heterogeneously populated
by two or more different types of trading algorithms or market mechanisms, such as is
exemplified by [38, 39, & 29]. Although the original paper [6] that introduced the
ZIP8 algorithm also studied ZIP8’s performance only in homogeneously populated
markets, nevertheless ZIP8 was subsequently used as a benchmark trading algorithm
in numerous studies of strategic interactions between heterogeneous mixes of trading
algorithms, performed by several independent groups of researchers. The number of
such papers in which ZIP8 (or close derivatives of ZIP8) have been used is fairly
large, and the list includes: [15, 38, 39, 23, 29, 40, & 1]. Thus, given that so much
prior work exploring strategic interactions and heterogeneous populations has been
based on ZIP8, it seems reasonable at least to presume that researchers with an
interest in studying heterogeneous marketplaces might find ZIP60 a useful new
benchmark, even though this current paper reports only on ZIP60 in homogeneous
settings. While the study of ZIP60’s strategic interactions with other CDA bidding
algorithms is certainly an important topic of further research, it is beyond the scope of
this current paper.

Furthermore, it is worth noting that in pretty much all of the above-cited papers
studying strategic interactions between heterogeneous mixtures of bidding algorithms,
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the results come from experiments in which the nature of the market supply and de-
mand curves are essentially fixed for the duration of each experiment. That is, studies
exploring the effects that significant changes to the supply or demand (or both) curves
can have on the trading-agent market’s internal dynamics seem pretty rare. Most of-
ten, the supply and demand curves in any one trader-agent experiment remain largely
the same for the entire duration of that experiment. This seems very curious, given
that one commonly-claimed motivation for studying market systems is that mecha-
nisms such as the CDA are interesting because of their ability to quickly and robustly
adapt to dynamic and unexpected changes in supply and/or demand; that studies of
shock-changes in human CDA markets date back as far as Vernon Smith’s semmal
1962 paper [36]; and that such changes are known to occur in real-world markets.' If
CDA markets are interesting because they exhibit attractive adaptation to dynamic
changes in supply and demand, why is there this affection in the trading-agent litera-
ture for studying CDA systems where such changes are largely absent? In contrast,
the results reported in this paper all come from experiments in which the marketplaces
periodically undergo sudden “shock” changes to the supply and/or demand curves,
and where the ZIP60 traders are optimized on the basis of their ability to rapidly and
stably adapt to the new market conditions prevailing after each shock-change.

The rest of this paper is structured as follows. Section 2 gives an overview of ZIP
traders and of the experimental methods used, including a description of the continu-
ously variable space of auction types. This description is largely identical to the ac-
count given in previous papers (e.g., [10, 12]), albeit extended to describe how the
new experiments whose results are presented here differ from the previous work. The
new ZIP60 results are then presented, analyzed, and discussed in Section 3.

2 Methods

2.1 The Original Eight-Parameter ZIP

The original eight-parameter ZIP trading algorithm was first described fully in a
lengthy report [6], which included source-code (in ANSI C) of an example imple-
mentation. For the purposes of this paper, a high-level description of the algorithm
and its eight key parameters is sufficient. Illustrative C source-code for ZIP60 has
been published in [13]. As will be seen in Section 3, there are in fact a family of ZIP
algorithms between ZIP8 and ZIP60, and so hereinafter the acronym “ZIP” with no
numeric suffix is intended to mean “all ZIPn for 8<n<60 and beyond”.

ZIP traders deal in arbitrary abstract commodities. Each ZIP trader i is given a
private (i.e., secret) limit-price, 4;, which for a seller is the price below which it must
not sell and for a buyer is the price above which it must not buy. If a ZIP trader
completes a transaction at its A; price then it generates zero utility (“profit” for the
sellers or “saving” for the buyers). For this reason, each ZIP trader i maintains a time-
varying utility margin g4(7) and generates quote-prices pi(t) at time f using
pi(t)=A(1+u(t)) for sellers and p,(t)=A,(1-p(t)) for buyers. The “aim” of traders is to

"'E.g., in high-frequency foreign-exchange price time series, “gap” step-changes in price are not
unusual.
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maximize their utility over all trades, where utility is the difference between the
accepted quote-price and the trader’s 4; value. Trader i is given an initial value z4(0)
(i.e., 4(t) for t=0) which is subsequently adapted over time using a simple machine
learning technique known as the Widrow-Hoff rule which is also used in back-propa-
gation neural networks and in learning classifier systems. This rule has a “learning
rate” parameter f; that governs the speed of convergence between trader i’s quoted
price py(t) and the trader’s idealized “target” price 7(z). When calculating 7(t), ZIP
traders introduce a small random absolute perturbation generated from? U/[0,c,] (this
perturbation is positive when increasing 7(r), negative when decreasing) and also a
small random relative perturbation generated from U[I-c,, 1] when decreasing 7(t), or
from U[1,1+c,] when increasing 7(t), where c, and c, are global system constants. To
smooth over noise in the learning system, there is an additional “momentum” pa-
rameter ¥ for each trader (such momentum terms are also common in back-
propagation neural networks).

So, adaptation in each ZIP trader i has the following parameters: initial margin
H(0); learning rate f; and momentum term . In an entire market populated by ZIP
traders, values for these three parameters are randomly assigned to each trader via
M OV=ful tmine 12),  Bi=Fol Brnins P)s a0 Yi=ful Yoninr 12); fOr fi & K)=U[ @ 0r#x]. Hence,
to initialize an entire ZIP-trader market, it is necessary to specify values for the six
market-initialization parameters fhyin, L Bine B ¥ and ¥4 and for the two system
constants ¢, and c,. Thus any set of initialization parameters for a ZIP-trader market
exists within an eight-dimensional real space — hence “ZIP8”.

Vectors in this 8-space can be considered as “genotypes” in a genetic algorithm
(GA), and from an initial population of randomly generated genotypes it is possible to
allow a GA to find new genotype vectors that best satisfy an appropriate evaluation
function. This is exactly the process that was first introduced in [7, 8]. For the
purposes of this paper, we will consider the GA optimizer as a “black box” and leave
it largely un-discussed: full details accompany the source-code in [13].

In addition to using the GA to optimize the control parameters for the trader-
agents, one more real-valued numeric parameter was introduced in [10-12] to give the
GA automated control over the auction mechanism. This market-mechanism
parameter is called Q; and it governs the exogenously imposed probability that the
next quote in the marketplace will be taken from a seller, so Q=0.0 is a pure
one-sided auction where only buyers can quote (and hence is similar to an English
auction); Q=1.0 is pure one-sided with only sellers quoting (as in a Dutch Flower
auction); and Q,=0.5 makes quotes from buyers or sellers equi-probable (as in a
CDA). The surprising result reported in [10~12] is that “hybrid” auction mechanisms
(such as 0,=0.25) were found by the GA to give the best evaluation scores when the
value of Q, was evolved alongside the values of the eight ZIP control parameters.
Experiments where the value of Q; was under control of the GA are referred to here as
“EM* (for “evolving mechanism”) experiments, and experiments where the value of

2 Here v=U [x,y] denotes a random real value v generated from a uniform distribution over the
range [x,y]. .
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Q, was fixed, typically at the CDA value of 0.5, are referred to as “FM” experiments
(for “fixed mechanism”).

The fitness of genotypes was evaluated here using the methods described
previously [7, 8, 10-12]: one trial of a particular genome was performed by
initializing a ZIP-trader market from the genome, and then allowing the ZIP traders to
operate within the market for a fixed number of trading periods (often colloquially
referred to as “days”), with allocations of stock and currency being replenished
between each trading period. During each trading period, Smith’s [36] o measure
(root mean square deviation of transaction prices from the market’s theoretical com-
petitive equilibrium price) was monitored, and a weighted average of o, was calcu-
lated across the days in the trial, using a method described in more detail in the next
section. As the outcome of any one such trial is influenced by stochasticity in the
system, the final evaluation score for an individual was calculated as the arithmetic
mean of 100 such trials. Note that as minimal deviation of transaction prices from the
theoretical equilibrium price is desirable, lower scores are better: we aim here to
minimize the evaluation scores. That is, individuals with lower scores have greater
reproductive fitness.

2.2 Previous ZIP8 Results

In [12], results from 32 sets of experiments were published, where each experiment
involved sequences built from one or more of four specific market supply and demand
schedules. These four schedules are referred to as markets M1, M2, M3, and M4, and
are illustrated in [12, 13]. In all four schedules there are 11 buyers and 11 sellers, each
empowered to buy/sell one unit of commodity. Market M1 is taken from Smith’s
seminal 1962 paper [36] on his early experimental economics work, and the remain-
ing three markets are variations on M1. In M2 the slope of the demand curve has been
greatly reduced while the slope of the supply curve has been increased only slightly;
and in M4 the slope of the supply curve has been greatly reduced while the slope of
the demand curve has been increased only slightly. In M3 the slopes of both the
supply and demand curves are only slightly steeper than the slopes in M1, yet these
minor differences between the supply and demand curves in M1 and M3 can still lead
to significant differences in the final best evolved solutions.

The experiments reported in this paper use a method first explored in ZIP8 experi-
ments, involving “shock changes” being inflicted on the market by swapping from
one schedule to another partway through the evaluation process. Here, two shocks
occurred during each evaluation process (i.e., switching between three schedules). For
instance, in one experiment referred to here as M121, the evaluation involved six
trading periods (“days”) with supply and demand determined by M1, then a sudden
change to M2, then six periods/days later a reversion to Ml for a final six periods.
The other sets of experiments are similarly named M212, M123, M321, and so on.
Each of the three market schedules was used for six “days”, so the two-shock trials
last for 18 days. As in the previous GA-ZIP work, the evaluation function was a
weighted average of Smith’s [36] “o” measure of root mean square deviation of
transaction prices from the underlying theoretical equilibrium price at the start of the
experiment, measured across the six periods for each schedule used: in each trading
period p the value 0, was calculated, and the evaluation score was computed as
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(1/Zw,).Z(0,.w,) for p=1...18 with weights w=1.75, w,=1.5, w;=1.25, W3ip<7=1.0,
Wps6=Wp.6, ANd W5 12=W), 5.

The process used to compare the EM and FM cases is as follows. In any one
experiment, here involving a population of 30 genotypes over 500 generations, in
each generation the elite (best-scoring) individual is of most interest, and so the time-
series of the elite fitness score for the population is monitored across the 500
generations. These results are non-deterministic: different runs of the GA (with
different seed values for its random number generator) will yield different elite
trajectories. Examining the results from 50 repetitions of an experiment (varying only
the random seed between repetitions) often gives multimodal results, and in all
experiments we are interested only in the best elite mode (i.e. the mode with lowest
scores), which can be summarized by the mean and standard deviation (s.d.) of the
scores within that mode at each generation: these two values will be referred to here
as the best elite-mode fitness mean and s.d.. For comparison purposes, in the ZIP8
work reported in [12], similar trajectories of best elite-mode fitness values were
recorded from 50 repetitions of the each experiment in fixed-mechanism (FM)
conditions, where the value of Q, was not evolved but instead was fixed at the CDA
value of Q,=0.5.

The results from 18 dual-shock (triple-schedule) experiments were presented in
four separate data-tables in [12], grouped by the nature of the shocks (i.e., the
“treatment regime”). Table 3 showed results from experiments where only the de-
mand curve undergoes a major change on each shock (i.e.: M121, M212, M232,
M323, M123, and M321). Table 4 showed results from experiments where only the
supply curve undergoes a major change on each shock (i.e.: M141, M414, M434,
M343, M 143, and M341). In Table 5, one of the two shocks involves a major change
only to the demand curve while the other shock involves a major change only to the
supply curve (i.e.: M432, M234, M412, and M214); and in Table 6 each shock in-
volved a major change to both the supply curve and the demand curve (i.e.: M242 and
M424). In this paper, all 18 dual-shock results are shown together in a single graph,
but the results appear in table order, as was just listed.

Analysis of the ZIP8 results showed that the GA never failed to discover EM geno-
types that were at least as good (i.e. had elite evaluation scores at least as low) as the
corresponding FM genotypes, and in several cases the EM result was significantly
better (lower) than the FM result, at the 1% confidence level, using appropriate non-
parametric significance tests such as the Wilcoxon-Mann-Whitney (see, e.g., [35]), or
latterly the Robust Rank Order test [16].

The histogram in Figure 1 shows the results for GA-optimized ZIP8 in FM and EM
conditions. Fig.1 also shows the results from various styles of ZIP60 EM experiments,
discussed further in Section 3 of this paper. The ZIP8 statistics in Fig.1 are the results
of conducting a more rigorous and careful analysis (discussed in [13]) of the data than
was originally summarized and tabulated in [12]. The final evaluation score recorded
as the outcome of any one experiment is now taken as an average of the final few elite
scores (over generations 490 to 500) to smooth over noise in the evaluation process;
and the summary statistics for each type of experiment are here always calculated
from the top 10% (i.e., the upper decile) of the 50 repetitions of each type of experi-
ment, regardless of how many repetitions converged on solutions with final elite
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scores in the best elite mode. So, the data in Fig.1 show the mean and s.d. of the final
outcome elite scores from the best (lowest-scoring) five experiments in each study.

2.3 Related Work

These previous GA-ZIP results have subsequently been replicated, adapted, and ex-
tended in a number of independent studies. Robinson [32] explored the use of evolved
market-mechanisms in the context of market-based control (e.g. [4]) of scarce re-
sources in utility-scale corporate data centers. Walia [41] explored the use of the same
evolving-mechanism techniques but with markets populated by Gode & Sunder’s [20]
ZI trader-agents rather than ZIP traders, again finding evidence that non-standard hy-
brid mechanisms were discovered as good/best solutions by the GA; and Byde [2]
demonstrated that the same techniques could lead to the evolution of hybrid sealed-
bid auction mechanisms, regardless of the type of trader operating in the market.
Shipp [34] investigated how the nature of the evolved solutions changed as the num-
ber of “market shocks” used in the evaluation process increased; and Wichett [43]
explored a system in which multiple reproductively separate “gene-pools” of ZIP
traders competed, co-adapted, and co-evolved along with the market mechanism.
Other recent uses of ZIP include modifying it for bargaining in sealed-bid auctions
[1]; using ZIP traders to study speculative trading in business-to-business exchanges
[25]; and using ZIP traders to explore issues of reputation and information quality in a
variety of market configurations [24].

The results in [10] were the first demonstration that radically new market
mechanisms for artificial traders may be designed by automatic means. But, at much the
same time as they were being generated, Steve Phelps and his colleagues were
independently working on a conceptually very similar (but algorithmically rather differ-
ent) theme of using artificial evolution to develop and study new auction-market
mechanisms [29]. In addition to the contemporaneous work of Phelps et al., a number of
other authors have more recently reported on the results of using artificial evolution and
other forms of automated search, learning, or optimization for exploring spaces of
possible trader-agent strategies, and possible new auction mechanisms, generally with
positive results [39, 18, 26, 28, 21, 27, 31, & 42]. Of course, the paper introducing ZIP
[6] was not the first-ever study of artificial trading agents in double-auction markets;
notable prior work includes [44], [17], and [33]. Also, [19] was developed indepen-
dently at much the same time. For additional discussion of earlier work, see [6].

3 Z1P60

3.1 From 8 to 60 in Five Paragraphs

The results from using a GA to fine-tune the ZIP8 trader were sufficiently encourag-
ing that they provoke the question of whether new variants of ZIP can be developed to
take advantage of the fact that we can now (generally, at least) rely on automated
optimizers like the GA to set appropriate values for the numeric parameters affecting
the traders. If we commit to using an optimizer to set the parameter values, we don’t
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need to keep the number of parameters small enough for them all to be manageable or
comprehensible by humans. That’s the rationale for ZIP60.

To this end, observe that in ZIP8 the genome specifies the same vector of eight real
values {thyin, ta, Buin, Par Yuin» ¥a» Ca» ¢} whether the trader is a buyer or a seller.
But in some situations it’s plausible that the market dynamics might be better if the
parameter-values used by the buyers were different to those used by the sellers, so we
could in principle have a GA-ZIP system dealing with these two cases (i.e. where
Case 1 is that the trader is a buyer; Case 2 is that the trader is a seller) and hence op-
timizing sixteen real parameters (i.e., “ZIP16”), with the first vector of eight values
being used to initialize the buyers and the second being used to initialize the sellers.

Next, note that in some situations a ZIP trader (whether it is a buyer or a seller) has
to increase its margin, and in others it has to decrease its margin, and that it may be
useful to have different parameter-values depending on which of the four cases we are
in, i.e. whether the trader is a buyer raising its margin, a buyer lowering its margin, a
seller raising, or a seller lowering. That’s 4 cases, each with 8 values, and so “ZIP32”.
But we can then additionally note that, in the original specification of the ZIP algo-
rithm, both for buyers and for sellers, there are actually three different cases or
circumstances in which the trader alters its margin (see [6] pp.42-43 for the details of
and rationale for this design). For example, a seller’s margin is raised if one condition
holds true (i.e., if the last quote was accepted and the seller’s current price is less than
the price of the current quote); but a seller’s margin is lowered if either of two other
possible conditions are true (i.e.: if the last quote was an accepted bid and the seller is
active and the seller’s price is greater than the price of the last quote; or if the last
quote was an offer that was accepted and the seller is active and its price is greater
than the price of the last quote). So we could have the genome specify rhree corre-
sponding parameter-value vectors for the buyers and also three such vectors for the
sellers, i.e. a total of six different vectors for six different cases, which at eight values
per vector gives us “ZIP48”.

And in a final flourish of parameter-count inflation, let’s abandon the use of a mere
pair of system-wide global constants ¢, and ¢, and in place initialize each trader i with
its own corresponding “personal” values c,; and c,; generated at initialization from
the uniform distributions U/[C,.min CaemintCa:nl & U[Crmins Crmin+Cr.al- This addition of
extra parameters still allows solutions involving the old system-wide constant ¢, and
¢, values to be “discovered” by the GA — that will happen if better evaluation scores
are associated with (near-)zero values of ¢,.4 and c,.4. So, the parameter-value vectors
for each case needs now to specify not only the six previous system parameters (ty,,
Ha, Brins Bas Yuin» and y,) but also the values for the four newly-introduced system
parameters Cu:min» Ca:4> Cr-min» and c¢,.4 — 1i.e., ten values per vector. For six cases, each
with ten values per vector, we get to sixty values: “ZIP60”.

It is worth noting that this final increase from eight to ten parameter-values per
case could also be applied to any of the other ZIPn versions mentioned in the
preceding paragraphs. That is, by the expansion of the specification of ¢, and c,, ZIP8
becomes ZIP10; ZIP16 becomes ZIP20; and ZIP32 becomes ZIP40.

We need also to introduce some terminology that will ease the analysis and discus-
sion that come later. While a ZIP8 trader has one genetically-specified value for each
parameter (so, for example, it has only one £, value), a ZIP60 genome specifies six
related parameter values — one for each case — which we will refer to by adding



