CAMBRIDGE

Alexander Fridman

PLASMA
CHEMISTRY



Plasma Chemistry

Alexander Fridman

Drexel University

BB CAMBRIDGE

& f» UNIVERSITY PRESS




CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo, Delhi

Cambridge University Press

32 Avenue of the Americas, New York, NY 10013-2473, USA
www.cambridge.org

Information on this title: www.cambridge.org/9780521847353
© Alexander Fridman 2008

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without

the written permission of Cambridge University Press.

First published 2008

Printed in the United States of America.

A catalog record for this publication is available from the British Library.
ISBN-13  978-0-521-84735-3 hardback

Cambridge University Press has no responsibility for

the persistence or accuracy of URLs for external or

third-party Internet Web sites referred to in this publication

and does not guarantee that any content on such
Web sites is, or will remain, accurate or appropriate.



PLASMA CHEMISTRY

This unique book provides a fundamental introduction to all aspects of modern
plasma chemistry. The book describes mechanisms and kinetics of chemical pro-
cesses in plasma, plasma statistics, thermodynamics, fluid mechanics, and elec-
trodynamics, as well as all major electric discharges applied in plasma chemistry.
The book considers most of the major applications of plasma chemistry, from
electronics to thermal coatings, from treatment of polymers to fuel conversion
and hydrogen production, and from plasma metallurgy to plasma medicine. The
book can be helpful to engineers, scientists, and students interested in plasma
physics, plasma chemistry, plasma engineering, and combustion, as well as in
chemical physics, lasers, energy systems, and environmental control. The book
contains an extensive database on plasma kinetics and thermodynamics, as well as
many convenient numerical formulas for practical calculations related to specific
plasma—chemical processes and applications. The book contains a large number
of problems and concept questions that are helpful in university courses related to
plasma, lasers, combustion, chemical kinetics, statistics and thermodynamics, and
high-temperature and high-energy fluid mechanics.

Alexander Fridman is Nyheim Chair Professor of Drexel University and Director
of Drexel Plasma Institute. His research focuses on plasma approaches to material
treatment, fuel conversion, hydrogen production, biology, medicine, and environ-
mental control. Professor Fridman has more than 35 years of plasma research expe-
rience in national laboratories and universities in Russia, France, and the United
States. He has published 6 books and 450 papers, chaired several international
plasma conferences, and received numerous awards, including the Stanley Kaplan
Distinguished Professorship in Chemical Kinetics and Energy Systems, the George
Soros Distinguished Professorship in Physics, and the State Prize of the USSR for
discovery of selective stimulation of chemical processes in non-thermal plasma.
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Foreword

Although the public understanding of plasmas may be limited to plasma TVs, low-
temperature plasma processes are beginning to enter into a higher level of consciousness
due to the importance of plasma in many aspects of technological developments. The use
of plasma for industrial purposes began more than 100 years ago with plasma sources used
to produce light. Since then, plasma processes have emerged in transforming wide-ranging
technologies, including microelectronics, gas lasers, polymers and novel materials, protec-
tive coatings, and water purification, and finally found their ubiquitous place in our homes.
Plasma systems or plasma-treated materials are now commonly used and can be found in
air-cleaning systems; food containers; fruit, meat, and vegetable treatment; fabrics; and
medical devices.

In recent years, new application areas of plasma chemistry and plasma processing have
been established, such as plasma nanotechnology with the continuous growth of the “dusty
plasmas” domain, plasma production and modification of nanotubes, plasma aerodynam-
ics, and plasma ignition and stabilization of flames. With the recent emphasis on alternative
energy and environmental concerns, plasma chemistry has revolutionized hydrogen pro-
duction, biomass conversion, and fuel-cell technology. In the same manner, the use of
non-thermal plasmas in biology and medicine will likely “explode” in the coming years for
various applications. Plasma is expected to soon be widely used in surgery, decontamina-
tion and sterilization of surfaces and devices, and air and water streams, as well as in tissue
engineering and direct treatment of skin diseases.

In many of these applications, comprehension of detailed mechanisms, knowledge of
the reaction kinetics, and understanding of the production of radicals or excited species
are vital for optimization of plasma reactors and plasma processes. A growing number
of universities recognize the importance of plasma technology and are preparing future
professionals who are cognizant of the latest achievements in practice. Drexel University
(more specifically, Drexel Plasma Institute), where the author of the book serves as the
Nyheim Chair Professor, is one of the world’s leading centers focused on plasma chemistry
and engineering. Drexel University today makes a significant contribution to the successful
development of both plasma research and plasma education and works closely with the
International Plasma Chemistry Society to coordinate international activities in research,
education, and outreach.

As a result of the increased interest in low-pressure plasma science, researchers and
engineers are faced with the problem of evaluating the broad and varied literature from
a common basis of fundamental plasma chemistry. The book that you hold in your hands
meets this challenge! This book represents the first comprehensive contribution that presents
the fundamentals of plasma chemistry and the scientific basis of most modern applications
of plasma technologies. This book is written by my distinguished colleague and friend,
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Foreword

Alexander Fridman, who has made outstanding contributions in the development of mod-
ern plasma science and engineering, especially in plasma kinetics of excited and charged
particles, in the development of novel non-thermal atmospheric-pressure discharges, in fuel
conversion and hydrogen production, in plasma sterilization and disinfection, and, more
recently, in breakthrough developments in plasma medicine. Plasma Chemistry is of unique
value to scientists, engineers, and students in the domains of plasma physics, chemistry,
and engineering. It is my great pleasure to recommend this excellent work to practitioners,
students, and scientists who are interested in the fundamentals and applications of plasma
chemistry.

Jean-Michel Pouvesle,

President of the International Plasma Chemistry Society
Director of GREMI, University of Orleans, France
June, 2007



Preface

Plasma chemistry is an area of research that has consumed and inspired more than 35 years
of the author’s professional activities. During this period, plasma chemistry has become a
rapidly growing area of scientific endeavor that holds great promise for practical applications
for industrial and medical fields. Plasma has become a ubiquitous element that pervades
many aspects of our lives. For example, the public is well aware of plasma TV, fluorescent
lamps, and plasma thrusters, as well as popular-culture concepts such as plasma guns and
plasma shields from Star Trek. Not many are aware, however, that computers, cell phones,
and other modern electronic devices are manufactured using plasma-enabled chemical
processing equipment; that most of the synthetic fibers used in clothing, photomaterials,
and advanced packaging materials are plasma treated; that a significant amount of potable
water in the world is purified using ozone-plasma technology; and that many different tools
and special surfaces are plasma coated to protect and provide them with new extraordinary
properties. The developments in plasma chemistry are enabling tremendous growth in a
variety of applications for manufacturing, environmental remediation, and therapeutic and
preventive medicine.

The motivation for this book is to provide engineers and scientists with a foundational
understanding of the physical and chemical phenomena associated with both thermal and
non-thermal discharge plasmas. Students pursuing degrees in electrical, chemical, mechan-
ical, environmental, and materials engineering will find that the applications in plasma and
plasma chemistry will have many important bearings in their own disciplinary areas. There-
fore, the objectives and challenges of this book are to present the broad extent of basic and
applied knowledge on modern plasma chemistry in a comprehensive manner for students,
as well as for senior scientists and engineers.

This book also includes detailed problems and inquiries to enhance the conceptual
understanding of the diverse plasma chemistry—related topics ranging from nonequilibrium
processes to quantum chemistry in a manner that is readily amenable to interactive learning
for students and practitioners of the topic. The problems and concept questions have been
developed based on the sequence of plasma courses taught by the author at Drexel University.
The book also contains extensive data tables and numerical and empirical formulas to
help engineers, scientists, and practitioners in calculations of plasma-chemical systems and
plasma-chemical processes. The book consists of 12 chapters; the first 4 chapters focus
on the fundamental aspects of plasma chemistry, including elementary processes, physical
and chemical kinetics of charged and excited plasma particles, and basic physics of gas
discharges. The following 8 chapters deal with specific applications of plasma chemistry
on practical implementation in areas such as electronics manufacturing, energy systems,
fuel conversion, surface treatment, remediation of contaminated air and water, treatment of
diseases, and destruction of pathogens.
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