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Preface

This sixth edition of Calculus with Analytic Geometry follows in the tradition
of its predecessors. It is designed for the standard science and engineering
calculus course offered at most U.S. universities and colleges. It seeks to be
correct without being overly rigorous; it aims to be up-to-date without being
faddish, and it claims to be written in a style that makes mathematics pal-
atable even to students who are afraid of the subject. All the major features
of previous editions have been retained: chapter opening biographies, care-
fully organized problem sets, a conceptual geometric emphasis, chapter re-
view problem sets, marginal boxes with cautions and asides, a formula card,
and tables. But there is much that is new too.

A lean and lively calculus. Regardless of how we view the specific recom-
mendations of the many groups calling for a revamping of the standard
calculus course, we must agree that change is needed. First, the course and
the textbooks cover too much material. In making this revision, we were
determined to reduce the number of topics. But because a survey of users
showed little agreement on what could be left out, we have eliminated only
one topic—fluid force. Although our book is leaner than most calculus
books, we urge instructors to make their course even leaner than our book.
Select topics; don’t try to cover everything.

To encourage students to read the text and to reinforce our conceptual
emphasis, we begin every problem set with four fill-in-the-blank items. These
test mastery of the basic vocabulary, understanding of the theorems, and
ability to apply the concepts in the simplest settings. A student who has read
the lesson should be able to fill in these blanks quickly. We think students
should respond to these items before proceeding to the later problems. We
encourage this by giving immediate feedback; the correct answers are given
at the end of the problem set.

Number sense distinguishes the mature mathematics student from the
neophyte. All calculus students make numerical mistakes in solving prob-
lems, but the one with number sense recognizes an absurd answer and
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reworks the problem. To encourage and develop this important ability, we
have emphasized a process we call estimation (introduced in Section 1.2). We
suggest how to make mental estimates, how to arrive at ballpark numerical
answers to questions. We do this ourselves in the text in many places, and
we propose that students do this, especially in problems marked with the
symbol (.

Use of computers. Perhaps the most significant new feature in this
revision is the inclusion of a host of computer problems. We do not ask
students to write computer programs. Rather we encourage students to use
one of the commercially available calculus programs in exploring the con-
cepts of calculus. We do this by adding computer problems to about half of
the problem sets. They are always at the ends of these sets (so they can be
ignored) and they are always identified with the symbol PCl. We have
worked hard to make these problems meaningful, exploratory (sometimes
leading to conjectures), and reasonable. Our model has been True BASIC
Calculus for one-variable calculus and True BASIC MacFuntion for multi-
variate calculus. These packages are inexpensive, are remarkably easy to use,
and match our book exceptionally well. We have worked all the computer
problems in the text using these packages, but instructors will have other
favorites that can be used as well. A good share of these problems can even
be worked on hand-held calculators such as the HP28S. Incidentally, we
include solutions to only a few of the computer problems (since we think
some instructors may want to have solutions handed in and, anyway, giving
answers would spoil much of the fun); however, solutions are given in the
Instructor’s Manual. For those instructors who believe that computers with
their wonderful graphical capabilities can enliven and enhance understanding
of calculus, we suggest that computer problems be substituted for some of
the more traditional calculus exercises. Other instructors may simply ignore
the computer problems. After all, calculus has been taught and taught well
without computers for 300 years. .

We continue to label many problems with the symbol €' to indicate
that a simple scientific calculator will be useful in solving these problems.

Pedagical concern. Our 35 years of teaching calculus suggest pacing
is very important. Our goal was to prepare sections of about equal length
(1 day’s lesson). But to help students over difficult hurdles, we have spread
out certain concepts. For example, the introduction of the derivative and the
Chain Rule are each stretched into two lessons and vectors are first intro-
duced in two dimensions and later in three dimensions. This concern for
pacing is evident in carefully constructed problem sets that gradually lead
the student from routine exercises to challenging applied problems.

Our conceptual emphasis means that definitions should be given in a
consistent way. This implies that concepts for one-variable calculus should
generalize naturally to the many variable case. Note how we achieve this for
the concept of limit (Sections 2.5, 13.4, and 15.3), derivative (Sections 3.2,
13.4, and 15.4), and definite integral (Sections 5.5, 16.1, 17.2, and 17.5).

Since linear algebra is now a standard course for scientists and engi-
neers, we think the terminology of calculus should be consistent with that
subject. Thus in our book, linearity is emphasized as an important idea, and
vectors are written as n-tuples as well as in ijk-form.
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We have been greatly concerned about readability. A developmental
editor was employed to go over every line, making sure that concepts are
clearly explained and that derivations are sufficiently detailed. To make the
book more visually appealing and easier to understand, many diagrams have
been added and they are now in four colors.

Supplements.
For instructors:

o Instructor’s Edition: Calculus with Analytic Geometry, 6th Ed.

e Instructor’s Solutions Manual. Worked-out solutions to all exercises in the
text.

e Test Item File

e Transparency Pack

e 5¥" IBM Testmanager and 33’ IBM Testmanager. Allows the instructor
to access questions from the computerized Test Item File and personally
prepare and print out tests. Includes an editing feature which allows ques-
tions to be added or changed. Demo software is available from College
Software.

e How to Teach Calculus Manual. Guidelines on how to teach calculus that
serve as a workshop for instructors prior to class starts-ups.

e How to Teach Calculus Video. Provides a 10-minute summary on teaching
habits applied to mathematics and 10-minute panel discussion on teaching
tips and pitfalls.

For students:

e Student’s Solutions Manual (ISBN 0-13-118035-5). Worked-out solutions
for every odd-numbered exercise in the text.

e How to Study Calculus Booklet (ISBN 0-13-435116-9). Contains strategies,
suggestions, and hints for learning and achieving success in calculus.

e A Calculus Companion: The Personal Computer (ISBN 0-13-111337-2).
Appropriate for self-paced courses, computer labs, and calculus courses
that include coverage of computers.

e A Calculus Companion: The Graphics Calculator (ISBN 0-13-111345-3).
This book demonstrates how programmable graphics-calculators can en-
hance a student’s appreciation of calculus, and it enables students to graph
functions.

o Calculus Calculator Manual (with disk) (ISBN 0-13-117441-X). A general
purpose programmable graphing calculator for IBM-compatible PC’s. It
evaluates expressions, graphs curves and surfaces, solves equations, and
integrates and differentiates functions. Students use Calculus Calculator to
develop, explore, and test mathematical ideas.

e Calculus Calculator Tutorial Program Pack (ISBN 0-13-117862-8). Soft-
ware disk with illustrations of computer problems in the text.

e Interactive Experience in Calculus (ISBN 0-13-040270-2) (Maclntosh,
Wattenburg/Wattenburg). A fully-interactive software product for the
Maclntosh computer. It features 20 interactive experiments that cover the
major calculus topics and requires no computer literacy.

e EPIC: Exploration Programs in Calculus. Available as IBM 5% and IBM
31" floppy disks. Software is available from College Software.
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Calculus: Yesterday . . .

René Descartes
1596-1650

. . . and Today

The idea of using coordinates to
produce a picture (graph) of an
equation is the fundamental principle
exploited by the new graphing
calculators.

René Descartes is best known as
the first great modern philosopher.
He was also a founder of modern
biology, a physicist, and a
mathematician.

Born in Touraine, France,
Descartes was the son of a
moderately wealthy lawyer who
sent him to a Jesuit school at the
age of eight. Because of delicate
health, Descartes was permitted to
spend his mornings studying in bed,
a practice he found so useful that
he continued it throughout the rest
of his life. At age 20, he obtained a
law degree and thereafter lived the
life of a gentleman, serving for a
few years in the army and living at
times in Paris, at others in the
Netherlands. Invited to instruct
Queen Christina, he went to
Sweden in 1649, where he died

of pneumonia that winter.
Descartes searched for a general
method of thinking that would give
coherence to knowledge and lead
to truth in the sciences. The search
led him to mathematics, which he
concluded was the means of
establishing truth in all fields. His
most influential mathematical work
was La Géomeétrie, published in
1637. In it, he attempted a
unification of the ancient and
venerable geometry with the still
infant algebra. Together with
another Frenchman, Pierre Fermat
(1601-1665), he is credited
with the union that we today call
analytic geometry, or coordinate
geometry. The full development of
calculus could not have occurred
without it. &
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THE REAL
NUMBER SYSTEM
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Calculus is based on the real number system and its properties. But what
are the real numbers and what are their properties? To answer, we start with
some simpler number systems.

The Integers and the Rational Numbers
all are the natural numbers,

The simplest numbers of

1,2,3,4,56...

With them we can count: our books, our friends, and our money. If we adjoin
their negatives and zero, we obtain the integers:

wes —35 =2, —=1,0,1,2, 3, ...

When we try to measure length, weight, or voltage, the integers are
inadequate. They are spaced too far apart to give sufficient precision. We
are led to consider quotients (ratios) of integers (Figure 1), numbers such as

=17

)

=AU B
g 5 —22 ™

Bl w

Note that we included 4¢ and =, though we would normally write them as
8 and —17, since they are equal to the latter by the ordinary meaning of
division. We did not include 3 or 2, since it is impossible to make sense out
of these symbols (see Problem 36). In fact, let us agree once and for all
to banish division by zero from this book (Figure 2). Numbers that can be
written in the form m/n, where m and n are integers with n # 0, are called
rational numbers.



