Proceedings Seventh International Conference on Conduction and Breakdown in Dielectric Liquids Berlin - West - Germany 27. July - 31. July 1981 edited by Werner F. Schmidt Sponsored by the IEEE Electrical Insulation Society # **Proceedings** Seventh International Conference on Conduction and Breakdown in Dielectric Liquids Berlin - West - Germany 27. July - 31. July 1981 edited by Werner F. Schmidt Sponsored by the IEEE Electrical Insulation Society Library of Congress Catalog Card Number 80-83222 The editor takes no responsibility for the accuracy, precision or completeness of information and data nor for the observance of rights of third parties. ### PRFFACE This book contains the papers submitted to the "7.International Conference on Conduction and Breakdown in Dielectric Liquids", Berlin-West-Germany, July 27. to 31., 1981. This series of conferences provides an interdisciplinary forum for the exchange of ideas and information on dielectric liquids. It addresses itself to materials scientists, physicists, chemists, and electrical engineers, who are engaged in fundamental and applied work on liquid dielectrics. The topics of the papers presented for the 7.ICDL range from fundamental studies on generation, transport and properties of charge carriers, conduction mechanisms to problems encountered in the application of insulating oils in electrical equipment. Some contributions from adjacent fields which relate directly to the main theme are also included. The planning of this conference began in 1978 immediately after the Rouen meeting (6.ICDL) and it was the joint effort of the International Advisory Committee and the Local Committee. The 7. ICDL acknowledges agratefully financial support obtained from the following organizations and agencies Deutsche Forschungsgemeinschaft, Bonn Exxon Research and Engineering Co., Linden, N. Jersey Hahn-Meitner-Institut für Kernforschung, Berlin IEEE Electrical Insulation Society, New York Senat von Berlin Siemens AG, Berlin/München At each conference a particular individual is honored for his contributions to the field and to this series of conferences. This year's invited lecture is due to Dr.E.O. Forster, who reviews the topic of breakdown of liquid hydrocarbons. Thanks are due to many more people than can be expressed individually who contributed to the preparation of the 7.ICDL. W.F.Schmidt Berlin, July 1981 ### International Advisory Committee - J. Calderwood (Salford, U.K.) - N. Felici (Grenoble, France) - E.O. Forster (Linden, N.J., USA) - C. Frei (Genève, Switzerland) - T.J. Gallagher (Dublin, Ireland) - J.M. Goldschvartz (Delft, Netherlands) - Y. Inuishi (Osaka, Japan) - G. Molinari (Genoa, Italy) - H. Syla (Prishtina, Yugoslavia) - A. Viviani (Genoa, Italy) ### Local Committees W.F. Schmidt, Conference Chairman Program: W. Döldissen P.J. Kuntz H. Metzler J.G. Rabe W.F. Schmidt ### Local Arrangements: W. Klein H. Böttcher J. Fuhr D. Hansen H. Jungblut Administrative and Technical Services: Hahn-Meitner-Institut Berlin Radiation Induced Conductivity, Geminate Recombination ## Contents II. # I. Radiation Induced Conductivity, Geminate Recombination | J. Noolandi
Theory of Time-Dependent Geminate Recombination | 1 | |--|----| | M. Eichhorn, F. Willig, KP. Charlé, K. Bitterling Influence of Coulombic Attraction and of an External Electric Field on Charge Carrier Separation in Organic Crystals | 6 | | P.J. Kuntz, W.F. Schmidt
A Classical Trajectory Model of Electron
Transfer in Argon | 11 | | U. Sowada, J.M. WarmanHot Electron Thermalisation in Fluid ArgonThe Effect of the Ramsauer-Minimum | 14 | | A. Mozumder
Radiation Induced Conductivity in Liquefied
Rare Gases | 19 | | H. Jungblut, W. Döldissen, W.F. Schmidt Drift of Radiation-Induced Charge Carriers in Liquid Sulfur Hexafluoride | | | Electronic Charge Carriers | | | K. Funabashi Optical Response of Excess Electrons in Dielectric Liquids | 31 | | A. Leycuras, J. Larour
Molecular Dynamics and Excess Electron Drift
Velocity in Non Polar Fluids | 36 | | H. Namba, M. Chiba, Y. Nakamura, T. Tezuka, K. Shinsaka, Y. Hatano Electron Mobilities in Liquid and Solid Cyclohexane | 41 | | Y. Sakai, H. Böttcher, W.F. Schmidt
Excess Electrons in Liquid Hydrogen and Liquid
Neon: Photo Injection and Mobility | 46 | | C.A.M. van den Ende, L. Nyikos, U. Sowada, J.M. Warman, A. Hummel Fast Migrating Negative Species in Liquid Hexafluorobenzene Studied by Means of | | | Pulse Radiolysis | 50 | | | G. Bakale, W.F. Schmidt The Effect of an Electric Field on Electron Attachment to SF ₆ in Non-Polar Liquids | 5 5 | |------|--|-----| | | J. Bös, O. Brede, R. Mehnert, W. Naumann
Transfer of the Positive Charge in Non-Polar
Liquids Studied by Pulse Radiolysis | 5 8 | | | J.M. Warman, M. Kunst, M.P. de Haas, J.B. Verberne Electron and Proton Conduction in Ice | 6 3 | | III. | Photo Conductivity | [3] | | | R. Reininger, U. Asaf, P. Laporte, I.T. Steinberger Evolution of Photo Conductivity in Fluid Xenon | 69 | | | J. Casanovas, R. Grob, D. Delacroix, J.P. Guelfucci, D. Blanc Effect of Some Electron Scavengers on the Photo Conductivity of Several Non-Polar Liquids | 7 4 | | | <u>U. Sowada</u>
Bulk Photo Conductivity by Photo Detachment | 79 | | | K. Siomos, L.G. Christophorou
Studies of Photoionization in Liquids Using
a Laser Two-Photon Ionization Conductivity
Technique | 8 4 | | | H. Böttcher, W.F. Schmidt
Laser-Induced Photo Conductivity of Liquid
Tetramethyl Silane | 8 9 | | | W.F. Schmidt, H. Böttcher, W. Döldissen, U. Hahn, E.E. Koch Photo Conductivity of Liquid Tetramethyl Germanium Studied by Means of Synchrotron Radiation | 94 | | | K. Nakagawa, K. Ohtake, M. Nishikawa
Conduction Band Energy in Dense Propane
Fluid | 97 | # IV. Conduction ٧. | I E Projection | | |--|-----| | <u>J.E. Brignell</u>
Complexities in the High Field Behaviour of
Moderately Pure Liquids | 105 | | N.J. Felici
A Tentative Explanation of the Voltage
Current Characteristic of Dielectric Liquids | 110 | | C.W. Smith, J.H. Calderwood
The Application of a Classical Conductivity
Model to Dielectric Liquids | 115 | | H. Shimokawa, A. Ohashi, M. Ueda
High Field Conduction in Dielectric Liquid
Films in Time Range of 10 µ s to 1 ms | 120 | | M. Takeuchi, H. Nagasaka
Electrical Conduction in Molten Polymers | 125 | | A. Denat, B. Gosse, J.P. Gosse
Electrical Conduction of Solutions of an
Ionic Surfactant in Hydrocarbons | 130 | | T. Miyamoto, M. Tsuchie, T. Ishii
Streaming Electrification and Ionic
Conduction in Insulating Oil | 135 | | A. Saad, R. Tobazéon
Behaviour of Porous Materials Impregnated
with a Liquid Dielectric | 140 | | J.R. Huck, G.A. Noyel, L.J. Jorat, A.M. Bondeau | | | Dielectric Relaxation and Conductivity in Propylene Carbonate | 145 | | T.C. Guo, W.W. Guo A Transient-State Model of Dielectric Relaxation Accounting for Lag of Cooperative Effect | 150 | | Prebreakdown | | | 1 1 CD1 Caraomii | | | P.B. McGrath, P.J. McKenny
Evidence for a Prebreakdown Gas Phase in
Liquid Dielectrics | 157 | | | A Study of the Prebreakdown Phenomena in
Liquefied Nitrogen Using a Modified | | |------|--|-----| | | Schlieren System | 162 | | | K. Arii, I. Kitani
Optical Studies of Prebreakdown Phenomena
in Liquid Hydrocarbons | 167 | | | H. Yamashita, M. Ishikawa, H. Amano
Prebreakdown Density Change and Current
in Transformer Oil under Non-Uniform Field | 172 | | | R.E. Hebner, E.F. Kelley, E.O. Forster,
G.J. Fitzpatrick
Observation of Prebreakdown and Breakdown
Phenomena in Liquid Hydrocarbons | 177 | | | K.C. Kao, H. Sueda
Prebreakdown Phenomena in High-Viscosity
Dielectric Liquids | 182 | | | E.M. Hizal Prebreakdown Discharges in Insulating Oil under Sub-Atmospheric Pressures | 187 | | | W. Pfeiffer, A. Leitl
Breakdown Development in Electronegative
Gases | 192 | | VI. | Invited Lecture | | | | E.O. Forster Electrical Breakdown in Liquid Hydrocarbons | 199 | | VII. | Breakdown | | | | Ch. Olivier Influence of Electrode Properties on the Dielectric Breakdown in Liquid Helium | 215 | | | G. Coletti, P. Girdinio, G. Liberti, G. Molinari | | | | Some Data on the AC Breakdown Strength of
Liquid Helium in the Milimetre Gap Range | 221 | | K. Yoshino, K. Ohseko, M. Shiraishi, | | |--|-----| | M. Terauchi, Y. Inuishi Dielectric Breakdown of Cryogenic Liquids in Terms of Pressure, Polarity, Pulse Width and Impurity | 226 | | M. Delucchi, P. Girdinio, G. Liberti, G. Molinari | | | A Statistical Analysis of the AC Dielectric
Strength of Liquid Nitrogen with IEC Spherical
Electrodes under Controlled Conditions | 231 | | K. Yoshino, K. Ohseko, M. Shiraishi, M. Terauchi, Y. Inuishi | | | Dependence of Polarity Effect of Dielectric Breakdown on Molecular Structure | 236 | | H. House, D.J. Gardner, C. Frei
Electric Breakdown Time Lag Distribution in
Flowing Pure Hexane | 241 | | D.H. Smith, D.W. Bouldin, L.G. Christophorou
DC Dielectric Strength of Fluorinated Benzenes
and the Stored Energy Theory | 246 | | E.M. Hizal, S. Dincer Breakdown Time Lags in Transformer Oil Subjected to Step Function Approximated Impulse Voltages | 251 | | I.Y. Megahed, A.A. Zaky | | | Effect of Electrode Material, Oxygen and Organic Additive on the Breakdown Strength of Mineral Oil under Nonuniform Field | 256 | | W.G. Chadband, J.H. Calderwood
The Triggered Gap | 261 | | S.A. Studniarz Influences of Insulating Barriers in Transformer Oil on the Partial Discharge Onset Stresses and the Times to Failure in Non-Uniform Fields | 266 | | N. Yildirim, K.F. Subhani, M.P. Shaw
An Electrothermal Model for Breakdown,
Switching and Memory Effects in Thin Amorphous
Chalcogenide Films | 271 | # VIII. Interface Phenomena | A. Denat, N. Felici, J.P. Gosse Strong Current Injection into Insulating Hydrocarbons under High Electric Fields | 279 | |---|-----| | N.J. Felici, J.P. Gosse, A. Solufomboahangy
Liquid Flow Electrification and Zeta-Potential
in Hydrocarbons | 284 | | G. Touchard, H. Romat
Mechanism of Charge Formation in Double Layer
Appearing at an Hydrocarbon Liquid-Metal
Interface | 289 | | D. Senatra
Dielectric Properties of Microemulsions and
of Their Lyotropic Liquid Crystalline Mesophase | 294 | | K. Tottori
Discharging Effect on Charged Oil Flow by
Wire Net Screen | 299 | | R. Coelho, D. Bardouil, B. Senouci
Heat Transfer in a Stressed Liquid: A Key
to the Interface Field | 304 | | T. Mizutani, M. Ieda, S. Ochiai, K. Ito
Interfacial Polarization in Silicone Oil-
Polypropylene Insulating System | 309 | | P.J. Martin, A.T. Richardson
Overstable Electrothermal Instabilities in a
Plane Layer of Dielectric Liquit | 314 | | R.E. James, F.E. Trick, R. Willoughby
Effect of Duct Configuration on Oil Activity
at Liquid/Solid Dielectric Interfaces | 318 | | A.J. Pearmain, B.G. Ferdy The Effect of Particles on Electric-Field Induced Phenomena at Solid/Liquid Interfaces | 323 | | S. Watanabe, A. Ohashi, M. Ito
Charging Tendency of Aliphatic Alcohols | 328 | | J.S. Mirza, M.A. Naji
Sumoto Effect Explained on the Basis of
Increased Surface Tension | 333 | | A. Stringer, H. House, L. Frampton
Electric Field Measurement Near Liquid/Solld
Dielectric Interfaces | 338 | | T.J. Lewis, R. Toomer, C. Barnes
Charge Transfer at Metal/Dielectric Liquid
Interfaces: Evidence from Solid State | 342 | # IX. Electro-kinetic Phenomena | J. Garrido | | |---|-----| | On the Electrokinetic Processes of Streaming Liquids | 351 | | P. Atten, B. Malraison, S. Ali Kani
Electrohydrodynamic Stability of Dielectric
Liquids Subjected to A.C. Fields | 356 | | T. Honda, T. Sasada, K. Kurosawa
Electroviscous Effect in Dielectric Liquids | 361 | | R. Disselnkötter, H. Hoffmann, H. Krause, | | | K. Bärner Investigation of Steady State EHD Convection in Different Liquid Dielectrics by Laser Light Scattering | 366 | | A. Rich, J.L. Sproston, G. Walker Some Observations on Bulk Electroconvection in Electrically Stressed Liquid Dielectrics | 371 | | A. Nosseir, I.F. Hashad, E. Taha, A. El-Zein
Electrically Induced Pressure in Mineral Oil
under External Bubble Injection | 378 | | R. Meyrueix, P. Atten, R. Tobazéon
Behaviour of a Gaseous Bubble into a Dielectric
Liquid Subjected to an A.C. Voltage | 383 | | J.K. Nelson, I.F.M. Hashad
Cavitation Dynamics in Stressed Dielectric
Liquids | 388 | | P. Ignácz
Permanent Cavities in Liquids | 393 | | M. Zahn, E.O. Forster, E.F. Kelley, R.E. Hebner
Hydrodynamic Shock Wave Propagation after
Electrical Breakdown | 398 | | R. Bozzo, G. Calci, P. Girdinio, P. Molfino, A. Viviani First Results of Computer Aided Identification of Model Paparetons for Field-Enhanced | | | of Model Parameters for Field-Enhanced Impurity Motion in Dielectric Liquids | 404 | ## X. Physico-chemical Effects XI. | A. Denat, B. Gosse, J. Casanovas, R. Grob
Influence of Sulphur Hexafluoride on the
Electrical Behaviour and Gassing Properties of
Transformer Oil | 411 | |---|-----| | E. Babula, J. Goliński, J.H. Calderwood, S. Zoledziowski Decomposition of Hydrocarbon Liquids by Partial Discharges | 416 | | W. Bronger, H.G. Kranz, K. Möller
Electrolytical Phenomena in Liquid Hydrocarbons
of Thermally Highstressed Rectifier
Transformers | 421 | | R. Meyrueix, R. Tobazéon Gas Generation in Dielectric Liquids Subjected to High AC Fields, and Its Relation with Partial Discharges in High Voltage Equipment | 427 | | E. Steinort, G. Malin
Behaviour of Silicone Oil Layers at Partial
Discharge Stress | 432 | | New Liquids, Applications | | | D.F. Binns, K.T. Yoon
Breakdown Phenomena in Midel 7131, Silicone
Fluid 561 and Transformer Oil | 439 | | S. Yasufuku, Y. Inuishi
Relationships between Aromaticity of Synthetic
Dielectric Fluids and their Electrical
Properties | 444 | | J.P. Crine, R. Grob, J. Casanovas, H. St-Onge,
D. Blanc
Influence of Sample Preparation and Conditioning
Procedure on the Electrical Properties of
Silicone Oil | 449 | | A.A. El-Sulaiman, A. Sultan, M.I. Qureshi
High Field D.C. Conduction in Aged Transformer
Oil | | | | 455 | | | Influence of the Electrode Paper Coatings on the Electric Strength of Transformer Oil | 465 | |-------------|---|-----| | | <u>J. Szuta, J. Kedzia, E. Brzostek</u>
Testing Static Electrification Phenomenon in
a Pressboard-Transformer Oil Insulating System | 470 | | VII | Post Doodling Dapon | | | XII. | Post Deadline Paper | | | | R.G. Romanets, B.N. Dikarev, E.L. Frankevich Conduction Currents and Space Charge Formation in Dielectric Liquids | 477 | | | | | | | Author Index | 483 | ### THEORY OF TIME-DEPENDENT GEMINATE RECOMBINATION #### J. Noolandi Xerox Research Centre of Canada, 2480 Dunwin Drive, Mississauga, Ontario, Canada, L5L 1J9 The solution of the Smoluchowski equation, $$\frac{\partial \rho}{\partial t} = D \operatorname{div} \left(e^{-W} \nabla \left[e^{W} \rho \right] \right) , \qquad (1)$$ where $$W = - (r_{C}/r + 2 F \mu r/r_{C})$$ (2) is the potential energy divided by $k_B T$, μ is the cosine of the polar angle between the electric field E and the radius vector, r is the Onsager radius 1, and F (dimensionless) is defined by $$F = eEr_C/2k_BT , (3)$$ is important both in solid state physics and in radiation chemistry. Recently we have obtained the time-dependent analytical solution of this equation (also known as the Onsager problem), and in this paper we review some of the properties of the solution, and discuss interesting applications. The details of the rather lengthy analytical expressions are given elsewhere2. Here we wish to concentrate on the singularity structure of the solution in the complex Laplace transform plane, shown in Fig. 1. The remarkable feature in this structure is the appearance of an infinite number of poles for F greater than a critical value $F_C \sim 1.27863$, with the limiting point the branch point at $-(F/2)^2$. While the shifted branch cut along the negative real axis is expected for a diffusive wave packet moving with a constant velocity, the existence of the discrete poles is surpri- sing. A simple interpreta- Fig. 1 Singularity structure of solution to time-dependent Smoluchowski equation in Laplace transform plane. Poles appear from branch point for $F = Er_2/2k_BT > 1.27863.$