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Preface

Molecular biology proceeds at unremitting pace to unfold new secrets of the
living world. Biology, long regarded as an inexact companion to physics and
chemistry, has undergone transformation. Now, chemical and physical
principles are tools in understanding highly complex biomolecular processes,
whose origin lies in a history of chance, constraint and natural selection. The
accuracy of these processes, often remarkably high, is crucial to their self-
perpetuation, both individually and collectively, as ingredients of the
organism as a whole.

In this book are presented thirteen chapters which deal with various facets
of the accuracy problem. Subjects covered include: the specificity of enzymes;
the fidelity of synthesis of proteins; the replication and repair of DNA:
general schemes for the enhancement of biological accuracy; selection for an
optimal balance between the costs and benefits of accuracy; and the possible
relevance of molecular mistakes to the process of ageing. The viewpoints are
distinct, yet complementary, and the book as a whole offers to researchers
and students the first comprehensive account of this growing field.

The idea of a book on accuracy in molecular processes was inspired first by a
workshop organized in 1978 by Jacques Ninio (a contributor to this volume)
with the sponsorship of the European Molecular Biology Organization. So
successful was this meeting that two further workshops on similar lines were
held in 1981 and 1985. Many of the contributors to this book participated in
these workshops, and the book has benefited substantially from the sustained,
informal exchange of views which the workshops have helped to bring about.
The book is entirely independent, however, of these conferences.

We are grateful to all contributors for the care and patience with which they
have written and, where necessary, revised their chapters, and to numerous of
our colleagues for helpful comments and suggestions. We thank, in
particular, Dr Alan Crowden of Chapman and Hall for his support and
encouragement.

T. B. L. Kirkwood
R. F. Rosenberger
D. J. Galas
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1 An introduction to the

problem of accuracy

D.]J. GALAS, T. B. L. KIRKWOOD
and R. F. ROSENBERGER

1.1 Setting the scene

The primary concern of this book is about how cells copy and maintain the
information which is stored as base sequences in their DNA and how they use
this information to specify the structure of proteins. It is generally accepted
that these processes of information transfer are the most essential and basic
functions any living organism has to perform.

Two of the outstanding features of the information transfer processes are
the accuracy and the speed with which they operate. All of them involve
selecting the correct monomer from a pool of quite similar molecular species,
for example the right nucleic acid out of the four available alternatives, or the
right amino acid out of the twenty present in the cytoplasm. In the most
accurate of the operations, the replication of DNA, the process has the
astonishingly low error rate of about one mistake in 10%. Further, selection
occurs at a speed which allows the polymerization of many monomers per
second. The mechanisms used to effect polymer synthesis and the problems
living cells encounter in doing this are discussed in depth in the following
chapters. In the present introductory chapter, we will attempt to bring these
systems into a general focus.

Historically, the first serious biological encounter with the concept of
random change came with the intellectual ferment that brought forth the
Darwinian theory of evolution (see Eisley, 1958). While Darwin discussed the
importance of the random variations of characteristics of organisms and
commented on the fundamental role that chance must therefore play in
evolution, it awaited the rise of genetics and, finally, molecular biology for
biologists to come to grips with the mechanistic reality of Darwin’s essential
variations. One of the earliest attempts to probe the accuracy of replication of
the hereditary molecule was made, in fact, by a theoretical physicist
(Schrodinger, 1944), who brought to bear the heady optimism of the new
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quantum theory of physics on the nature of the genetic mechanism. These
bold speculations helped to kindle the intellectual spirit that led in a few short
years to the identification of Watson—Crick base-pairing as the chemical rule
for replication of genetic information and the elucidation of the genetic code
as the set of rules for translating genes into proteins.

At first, the focus of attention on these discoveries was, quite naturally, on
the remarkable properties of base-pairing in providing deterministic chemical
rules for the replication and translation of genetic information. The possibility
of error was recognized, however, since without error there could be no
mutation, and without mutation there would be no evolution. In relation to
protein synthesis, Pauling (1957) pointed out that the molecular difference
between the amino acids valine and isoleucine (see Chapter 3) was so small
that it should be very difficult for the protein synthetic apparatus to dis-
criminate sharply between them, as it apparently does. Pauling thereby posed
in concrete terms the important question that most of the chapters deal with in
some form, namely, what details of the mechanisms for information transfer
are responsible for their extraordinary accuracy.

Shortly after Pauling’s challenge, Loftfield (1963) showed that dis-
crimination against valine was indeed much stronger than simple chemical
differences would predict. This was followed by the discovery that the first
steps in the charging of isoleucine tRNA were actually not very strongly
discriminatory against valine, but that a subsequent step destroyed the
activated valine (Baldwin and Berg, 1966). Subsequently, Yarus (1972a.b)
and Eldred and Schimmel (1972) discovered that aminoacyl-tRNA ligases
(synthetases) could actually deacylate their own tRNAs that are mischarged
with an incorrect amino acid. Thus, the accuracy of tRNA charging was seen
to be actively guarded by the charging enzymes (see Chapter 4). An
analogous sort of active monitoring or ‘proofreading’ was proposed by
Brutlag and Kornberg (1972) in the replication of DNA (see Chapter 8).

The accuracy of protein synthesis is, of course, not only due to the accuracy
with which tRNAs are charged. Over a period of time parallel with the above
studies on tRNA charging, firstly the ribosome was characterized and shown
to be central to protein synthesis and its accuracy, secondly the phenomenon
of ‘informational suppression’ was discovered (for review see Steege and Soll,
1979), and thirdly the misreading of codons induced by aminoglycoside
antibiotics, like streptomycin, was discovered. These phenomena are
discussed in Chapters 5 and 6.

Some of the first ideas on the role of the ribosome in determining the
accuracy of protein synthesis were provided by the inventive and catalytic
work of Luigi Gorini. In a series of highly original studies he examined the
effects of aminoglycoside antibiotics and ribosomal mutations on nonsense
and missense suppression and discussed the results in terms of the ability of
the variously perturbed ribosomes to discriminate among tRNAs and termin-
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ation factors. He showed that wild type ribosomes were significantly less
accurate than they could become by acquiring certain mutations in ribosomal
proteins, and particularly striking was his discovery of mutants with ribo-
somes more error-prone than the wild type (Rossett and Gorini, 1969). Thus,
it was established that the translation error level was readily genetically
manipulable and also that the bacterial cell could tolerate an increased level of
errors. These systems continue to reveal valuable insights into the mech-
anisms for control of accuracy (see Chapters 6 and 11).

The recent history of research into questions of molecular accuracy has
sounded two principal themes: (1) an ever more detailed analysis of the
molecular structures and the kinetics involved in determining accuracy (see
Chapters 3, 10 and 11) and (2) a convergence and cross-fertilization of ideas
found useful in the various realms of molecular accuracy in biology — tran-
scription (Chapter 7), translation (Chapters 5 and 6), charging of tRNAs
(Chapter 4), DNA replication and repair (Chapters 8 and 9), and the
substrate specificity of various enzymes (Chapter 3). Attention has also been
paid to the integrity of the genetic information transfer system as a whole
(Chapter 2 and see Fig. 1.1). As early as 1963, Orgel posed the question: how
can the translation process, which itself is mediated by highly specific
proteins, be stable against the feedback of mistakes in protein synthesis
(Orgel, 1963). The notion of potential instability in the cellular translation
process is important to the question of how life, with a stable translation
system, emerged in the first place (see below and Chapter 13) and has also
been suggested to have relevance to the process of ageing (Orgel, 1963). Since

Replication Transcription Translation

DNA polymerase RNA polymerase Ribosomes, aminoacyl-
tRNA synthetases, etc.

= RNA - Protein — all other
functions

Figure 1.1 Schematic representation of the main pathways of genetic information
transfer. The continuous arrows indicate the replication of DNA, the transcription of
DNA into RNA, and the translation of RNA into proteins. The dashed arrows indicate
the participation of products of genetic translation in these processes.

3
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accuracy of information transfer and its associated costs are so fundamental in
evolution. the possible role of accuracy breakdown in ageing has stimulated a
substantial amount of research (Chapter 12).

1.2 Some preliminary concepts
1.2.1 DEFINITIONS OF ACCURACY

There are several possible ways to define the accuracy of a molecular process.
First. the kind of error must be specified. In most of the instances considered
in this book, the basic error will be insertion of an incorrect, or noncognate,
monomer into a growing polymeric chain in place of the correct. or cognate,
monomer. Second, one must be clear whether it is the insertion of a particular
noncognate monomer which is of interest, or whether all possible misinser-
tions are to be considered. If the latter, one should be aware that different
misinsertions will not usually be made at equal rates. Third, there is the
possibility, supported by some experimental evidence (see Chapters 5 and 6).
that the error rate for insertion of any given monomer will be influenced by
the neighbouring sequence.

Let us assume that the basic error rate for insertion of monomers into a
growing polymeric chain is e (misinsertions/insertion), ignoring possible
differences in the error frequencies for different monomers. The proportion
of correctly synthesized polymers will depend on their lengths. For a polymer
made up of N monomeric units, the proportion of correctly synthesized
polymers will be (1 — )", and the proportion of polymers containing one or
more incorrect monomers will be Ey = 1—(1—e)". Table 1.1 shows values
of Ey for various values of e and N. Generally, it may be seen that for any
given value of e, the proportion of error-containing polymers rises sharply
with increasing N. This is likely to be why the larger proteins, for example, are
usually made up of smaller subunits. At a basic error rate of e = 107*-107°
(Loftfield, 1963), synthesis of a very long protein molecule without error

Table 1.1 Frequencies of error-containing polymers (En) as a function of the
frequency of inserting incorrect monomers (e) and the length of the polymer (N)

e
N 1072 1073 1074 1077
10 0.096 0.010 0.001 0.000
30 0.260 0.030 0.003 0.000
100 0.634 0.095 0.010 0.001
300 0.951 0.260 0.030 0.003

1000 1.000 0.632 0.095 0.010




