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Introduction

It might be argued that electrophoresis was born as soon as Volta described the
pile, i.e. the first power supply able to deliver continuous electricity. In fact, there are
rumours that Reuss, an officer in the Czar army, was caught stealing sand on the banks
of the Moskva river, instead of fighting against the Napoleon army, for filling a U-tube
with which he was performing electrophoresis, utilizing as a power supply a voltaic
pile composed of 92 silver roubles and an equal number of zinc plates. His was a rich
man pile, indeed. In his memoirs, by the title “Notice sur un nouvel effet de I’electricité
galvanique”, dated 15 April 1808, he reported a curious phenomenon of water transport
at the negative pole, upon passage of the current; he had discovered electroendoosmosis!

By all means, though, 1808 could hardly be labelled as the birth of modern
electrophoresis. It was the twentieth century that made fundamental contributions to the
field and, perhaps, it was the elegant work of Arne Tiselius, a 1948 Nobel laureate,
that laid the foundations of present-day electrokinetic methodologies. Arne himself,
though, realized that his instrumentation would not have carried us that far in the
field. All previous work, including his own, was performed in free solution, which
was anathema to any separation of macromolecules. The latter, in fact, had the nasty
habit of sedimenting in the electric field, as soon as they were physically separated
from each other and surrounded by zones of pure electrolyte, for the simple reason that
such zones were denser than the surrounding liquid. Therefore, Tiselius’ electrophoretic
cell was constructed in such a way (here too a U-cell with ascending and descending
limbs) that only boundary separation among the various protein zones would occur.
The sample zone was thus rather large and would fill up all the bottom, as well as
parts of the limbs, of the U-cell. Thus, as the current was applied, ascending and
descending boundaries would be detected in a schlieren observation chamber, but no
complete physical separation of pure zones could ever be achieved. Thus, Tiselius
himself searched for other means for achieving a “zone separation”, in which each
component would be allowed to form a zone separated by others by empty regions.

A host of stabilizing media for zone electrophoresis were soon described, since the
electrophoretic chamber had to be filled with a micro capillary system able to suppress
convective flows, as well as to prevent protein sedimentation. Paper, fabrics, such as pure
cotton, silk, potato starch, cellulose powder, glass powder and plastics, such as polyvinyl
chloride, pevikon C-870 and even minerals, such as asbestos, were tested. Definitely,
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though, modern zone electrophoresis was born with the advent of hydrophilic gels, such
as Sephadex, agarose and polyacrylamide. For proteins, polyacrylamide turned out to
be a unique zonal support, offering full transparency in the visible and near UV region,
elasticity, flexibility and a full range of porosities which could be engineered at whim
by altering either the total monomer content (%T) or the cross-linker value (%C), or
both. In polyacrylamide support media, three major events concurred in shaping modern
technologies:

e The description of disc electrophoresis by Ornstein [1] and Davies [2], a method
which dramatically increased resolution by introducing in the matrix and buffers a series
of discontinuities able to sharpen up the bands and form incredibly thin starting zones;

e The discovery of sodium dodecyl sulphate (SDS) electrophoresis [3], by which
detergent-saturated proteins would be separated in a polyacrylamide gel mostly via their
mass, rather than by combined mass and charge effects, as customary in conventional
electrophoresis;

e The description of isoelectric focusing in polyacrylamide gels [4], by which
proteins would be separated essentially on the basis of their net charge (at a given value
of their titration curve, the isoelectric point).

Now the elements for the next major quantum leap were laid out on the table.
Three groups took advantage of that and reported, simultaneously and independently,
in 1975, the creation of two-dimensional maps, by combining orthogonally a first
dimension, based on pure charge fractionation, with a second dimension, based on size
discrimination [5-7]. With that, modern proteome analysis was born, although it took,
of course, many years of developments and refinements, for bringing the technique to
the present-day very sophisticated level. Instrumental to that were major contributions
from the field of informatics, who had to develop new algorithms for mapping the
field, acquiring the images, cleaning the background, matching different maps among
themselves. Informatics has also tremendously contributed by laying out a format for
protein databases, many of which today are available and which represent a formidable
tool in protein characterization [8]. We biochemists owe a big tribute to them; without
their contribution, present-day two-dimensional map analysis would be meaningless.
Another major contribution, of course, was the introduction, in 1982, of immobilized
pH gradients [9], which offered a new, most powerful view of the field, guaranteeing
much increased resolution and much higher reproducibility in spot position. Just as
fundamental was the introduction, in the early nineties, of mass spectrometry as a
tool for sequencing small peptides and for identifying proteins. Especially its version
of MALDI-TOF (matrix-assisted, laser desorption ionization, time of flight) coupled
to delayed extraction, has been instrumental in protein recognition and expanding
databases [10]. With this trident (2-D maps, protein databases and mass spectrometry)
we can venture in the ocean, like the Greek God Triton, equipped to catch the Marlin of
our life, like the old character in the famous novel of Hemingway.

At the start of the third millennium, we are now faced with a dramatic growth of
proteome analysis, due also to the fact that we have reached near completion in the
major undertaking of the molecular biology of the last decade, namely the sequencing
of the human genome as well as of a number of other genomes. Now that the code is
decoded, we are faced with the fact that the vast majority of proteins are still a ferra
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incognita, a huge field to be explored and mapped. This is perhaps the starting of a
new stampede, a rush towards the new gold field, the forty-niners running after the gold
of the third millennium, mining the proteome. Pharmaceutical companies, universities,
venture capitals, geneticists, physicians, they are all engaged into this race, which
promises a good harvest. Therefore, it is felt that a book in the field was sorely needed,
to accompany us in this search. It is true, plenty of books have appeared recently in the
field of proteome analysis, but they also become rapidly obsolete, as major advances
appear almost every day. The present book also has a distinct flavour: it combines
not only the practice, amply described in three major chapters (Chs. 12-14), but also
the theory, dealt with in extenso in the first eleven chapters. Present-day books, most
unfortunately, simply ignore all the theoretical developments, and often are reduced to
mere cook books. But science is not, and cannot be, relegated to pure recipes: in order
to progress, science has to be nourished by theory, by predictions, by description of
basic phenomena. So, we hope that this unique combination will make the book more
palatable to present-day audience. Perhaps, it might become the vademecum, the map
of the gold fields for the new miners, proteome scientists, ready to go underground and
dig. Dig you may, of course, and we hope you will also find the mother lode.
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This part of the book does not pretend to be a complete description of all aspects of
isoelectric focussing. It is devoted first of all to those aspects that have still not yet found
the appropriate reflection in the scientific literature. Firstly this concerns the question of
the theory of polyvalent electrolyte dissociation. This is a matter of great importance
since for modelling the polyelectrolyte behaviour at any process of electrophoretic
separation one needs an appropriate pH-mobility relation, and it is extremely important
to use a correct dissociation scheme.

The first section is devoted to the fundamentals of IEF. In the first two chapters some
different aspects of the dissociation theory are considered, in the third one the kinetic
aspects of acid—base equilibria are briefly discussed, but there the disadvantages of the
traditional description are only emphasised. The fourth and fifth chapters concern the
basic principles of the pH gradients. The steady-state IEF is discussed in Chapter 6,
some aspects of the dynamics are dealt with in the following chapter (Chapter 7).

The second section deals with various topics under the title ‘optimisation of elec-
trophoretic separation’. Here, the two dimensional methods are also analysed. Chapter
11, entitled “The limitation of the method of IEF’, deals with important aspects like the
resolving possibility limits for the isoelectric focussing technique, the perspectives of
IEF whilst also the questions of microheterogeneity of biopolymers are discussed there.

ISOELECTRIC FOCUSSING: PRINCIPLES AND HISTORICAL ASPECTS

It is hardly possible to overemphasise the importance of isoelectric focussing for
analytical biochemistry. Isoelectric focussing (IEF) is the method of electrophoretic
separation of amphoteric substances based on the difference in their isoelectric points
(p). In the electric field any charged particle is subjected to the force F = QF and in
the isoelectric point, where its charge by definition equals zero, it should be immovable.
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