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Preface

The book deals with the fundamentals required for a first undergraduate
course in the subject. It covers the course contents usually given in the
second year of a four-year degree course on mechanics of solids/strength
of materials. It does not deal with advanced topics, but penetrates deep
into the fundamentals. It is lucidly written and is suitable for Indian and
many foreign universities. There is no pre-requisite for the course except
that some knowledge of mathematics and elementary statics is required.
The book contains ten chapters; it has about 500 problems, out of which
90 are fully solved. Answers.to all the problems are given. All the prob-
lems are in SI units. By an extensive use of footnotes, an attempt has been
made to securely link the subject matter presented in the text to more
advanced studies of mechanics to be undertaken by the reader later. A
brief outline of the book may be given as follows.

We begin by introducing certain fundamental concepts of the subject in
Chapter 1. More emphasis has been given at this stage on the physical con-
cept of quantities such as stress and strain rather than their mathematical
concept. These may provide a clear insight into the physical phenomenon
through an imaginative approach and broad outlook.

In Chapter 2, we discuss the determination of stresses and strains in
simple cases of loading. We start with the case of a bar in tension or com-
pression. The concept of uni-axial loading and deformation is then gra-
dually extended to bi-axial and tri-axial cases. Throughout this chapter,
we have put emphasis on the process of constructing idealized simple
mathematical models of real physical situations. In short, we have devoted
this chapter to make the beginners realize as to how a logical extension of
the concepts of mechanics helps us to understand the mechanical behaviour
of structural members and leads us to develop rational rules for their design
based on strength and stiffness.

We next present, in Chapter 3, the theory of torsion of a circular shaft.
Physical arguments of symmetry and simplifying assumptions regarding
the geometry of deformation have been discussed in detail. This helps in
clearly understanding the problem of torsion. The concept of shear-flow
due to torsion of thin-walled members has been introduced. A brief intro-
duction to the torsion of non-circular shafts has also been given.

One-dimensional load-carrying members subjected primarily to bending
are referred to as beams. They are frequently used in engineering structures,
and analysis of their bending is of great importance to the designers. As
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such, we have devoted the next three chapters to the theory of bending of
beams. In Chapter 4, after a brief description of various types of beams
and their loading, we have discussed the variation of shearing force and
bending moment along the length of the beam. Modern sign conventions
for S.F. and B.M. have been used. The concept of singularity functions has
been introduced to help set up a single equation for S.F. or B.M., valid
for the entire length of the beam under arbitrary loading. We have made
an attempt to prescribe methods for drawing the S.F. and B.M. diagrams
accurately and speedily. In Chapter 5, we have discussed stress distribution
due to bending over a cross-section of the beam. Starting with the simple
case of pure bending of a symmetrical beam, we have then considered the
case of transverse bending and the resulting shear stress distribution has
been found out. A more generalized flexural theory for unsymmetrical
beams has also been given. The chapter concludes with an approximate
determination of normal stress distribution for a beam with a large initial
curvature. Chapter 6 deals with the slope and deflection of the centroidal
axis of a beam due to bending. Double integration method using singula-
rity functions (sometimes also called Macaulay’s method) has been discus-
sed in greater length. However, other methods have also been discussed.
Use has also been made of the deflection characteristics in the solution of
statically indeterminate beams such as fixed beams, continuous beams,
propped cantilevers, etc.

In Chapter 7, we examine the state of stress and strain at a point in an
elastic and isotropic solid. In Part ““A” of the Chapter, we have restricted
ourselves to the state of plane stress and plane strain. Transformation laws
for the two-dimensional stress and strain tensors have been established.
These laws have been given in index notation as well, which could be easily
extended to general three-dimensional cases by more serious readers.
Mohr’s graphical representation has been explained for a quick evaluation
of stress or strain components. In view of the practical importance, the
analysis of data obtained by strain rosettes has also been considered. A
brief discussion of a general three dimensional stress and strain analysis
finds its place in Part ““B” of the chapter.

Having dealt with the four basic types of loading, namely, tension (or
compression), shear, torsion and bending separately in previous chapters,
we now present in Chapter 8, cases of combination of these loadings.
Superposition method has been used to determine the state of stress due
to combined loading. For beginners, sometimes it may be difficult to locate
the critical points i.e., the points of maximum stresses or strains, etc., in a
system under combined loading. As such we have laid emphasis on this
aspect of practical interest by taking up several cases and locating the
critical section or point carefully in each case. We have concluded this
chapter with an introduction to various stress and strain theories of elastic
failure.

There are occasions when a member may meet the requirements of
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strength and stiffness but it may lack stability. An example of such a
member is a long column, i.e., a long slender member subjected to compres-
sion. There are many other cases where the question of stability predominates.
However, in Chapter 9, we have concerned ourselves with elastic stability
of columns only. Euler’s method for determining the critical (buckling)
"»ad and its validity and limitations have been discussed. Rankine’s theory

- practical columns of intermediate length has also been given. Eccentri-

ly loaded columns and beam-columns find their place commensurate

A the elementary level of this text. Energy method for determining the

itical load has been postponed for the next chapter.

So far we have used Newtonian approach and dealt with vector or tensor
fields for the solution of deformation problems. An alternative treatment of
similar types of problems is through what is known as Lagrangian approach
using scalar fields. In Chapter 10, we have used the latter approach based
on elastic strain energy concept. First of all, we have described the methods
of computing the elastic strain energy in a bar under various conditions of
loading. These methods have then been extended to compute the strain
energy per unit volume at any point in an elastic body under various stress
fields. Next, we have given the statements and proofs of various energy
theorems for linear as well as non-linear systems. These theorems provide
a powerful method for determining displacement of any element of an
elastic system subjected to any type of loading. It has been shown as to how
a complex deformation problem becomes simpler by working with this
method rather than the ones previously discussed. Many practical applica-
tions have been discussed to highlight the usefulness of the energy methods.
Then we present Rayleigh’s energy method for obtaining an approximate
value of critical load for a column under various loadings and end
conditions.

Numerous persons have given direct and indirect help in preparation of
this book. In this regard, special thanks are due to Dr S.M.J. Al-Ali and
Dr B.M. Al-Ali of Iraq, Dr Wahajuddin of Bangladesh and the following
presons from India: Shri S. Ramachandran, Dr. B.P. Ambasht, Shri T.P.
Verma, Shri K.P. Jaiswal, Shri R.K. Tiwari, Shri G. Prasad, Shri A.K.
Srivastava, Dr. S. Prasad, Dr T. Singh, Dr B.L. Manocha, Dr R.P. Nikhed,
Dr S.P. Sinha, Shri B.M. Sinha, Shri S. Ray Shri V.S. Chimmalagi and
Dr B.D. Agarwal. Thanks are also due to Smt. B. Kopruly, Shri C.M.
Kumar and Shri Arjun Singh for typing the manuscript.

We are also deeply indebted to our wives who gave us moral support and
encouragement whenever needed.

The reviewers (not known to us personally!) did a fine job which has
improved the quality of the book; we are grateful to them.

P.N.S.
P.K.J.
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List of Symbols and Abbreviations

Area, vector quantity, matrices
Radius, coefficient, length, acceleration
Matrices

Coefficient, width

Constant, couple, curvature
Coefficient

Diameter

Depth, diameter

Young’s modulus of elasticity
Relative displacement

Force

Function

Shear modulus

Acceleration due to gravity

Height

Height

Stress invariant, moment of inertia

Unit vectors

Strain invariants, shape factor of torsion,
polar moment of inertia

Bulk modulus

Stiffness

Length

Length .

Direction cosines

Bending moment

Mass

Revolutions per minute (r.p.m.)

Constant

Unit outer normal vector

Power, arbitrary point, force
Force, static moment of area
Shear flow, intensity of loading
Radius of curvature, reactive force
Radius
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_; Position vector

S Surface

o

S Stress vector

s Distance

T Twisting moment, torque,
absolute temperature

t Time, width
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t Unit tangent vector

U Strain energy

u Displacement

U* Complementary energy

14 Volume, potential energy

v Displacement

w Work, energy weight

w Displacement, intensity of loading

X, Y, Z Coordinate axes
x, ¥, z Coordinates of a point

o Angle, coefficient of thermal expansion,
flexibility coefficient

Angle, coefficient

Shear strain

Differential quantity, displacement

Deflection (vertically downward), extension

Strain (generally normal strain)

Coefficient of viscosity

Angle, angle of twist

Lame’s constant, coefficient, direction cosines

Lame’s constant, coefficient of friction

Poisson’s ratio

Mass density, radius

Summation

Normal stress

Stress (generally shear stress)

Angle, fictitious force
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Angular velocity
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Introduction and Fundamental Concepts

1.1 Introduction

Readers are familiar with Newtonian mechanics from their studies in
physics. We have seen that mechanics is the science of forces and motion.
Like all other branches of science, mechanics too, with its numerous
engineering applications, has been rendering valuable service to the
mankind since the very beginning of our civilization. These applications
have been achieved through a proper blending of the principles of mecha-
nics with certain postulates and assumptions based on experiments and
experience. Rapid developments in almost all the branches of engineering
have created a tremendous technical literature on mechanics. This. vast
field of knowledge, which is still going through a period of intensive
development, goes by the popular name of Applied Mechanics.

Mechanics of Solids is a branch of applied mechanics that deals with
the mechanical behaviour of deformable solids subjected to various types
of external forces (loads).* It is a field of study that goes by a variety of
names, such as Strength of Materials, Mechanics of Materials and
Mechanics of Deformable Solids.** The solid bodies to be considered in
this book will include various components of structures or machines in the
form of bars, beams, shafts, columns, plates, shells, blocks, etc. Behaviour
of these components under different conditions of loading is of great con-
cern to the engineers of almost all disciplines for a reliable and successful
design of any structure or machine. The study of mechanics of solids
helps a design engineer to ensure that the structural members (or machine
elements) meet the following requirements with the minimum expenditure
of material.

(i) Each and every component should be able to resist, without failure,
the external forces to which it is subjected under service conditions. In
other words, it should possess adequate strength. This requirement

*When the word ‘force’ (or load) is used in a general sense, as at this place, it is
supposed to include a couple also.
**Some authors, however, tend to make minor distinctions between some of these.

1(45-59/1979)



2 Elementary Mechanics of Solids

demands that it should be of proper dimensions (shape and size) and be
made of appropriate material.

(ii) Every component should be able to resist deformation (change in
shape or size or both) under loading conditions. Deformations, beyond
certain specified limits (not necessarily large), may cause functional
damage, i.e. the component may fail to function satisfactorily because of,
say, mismatch between two mating components. This requires that the
component should possess adequate stiffness. Like strength, stiffness too
depends upon the dimensions and material of the component. However,
proper strength does not necessarily ensure proper stiffness. A component
possessing high strength may have poor stiffness and vice versa. The geo-
metry of a component is actually decided by the limiting requirements of
strength and stiffness.

(iii) Some of the components may be required to withstand dynamu,
loads. They should, therefore, be capable of absorbing energy within
certain limits, without any damage. Technically speaking, they should
possess adequate toughness.* In general, toughness depends upon a suit-
able combination of strength and stiffness.

(iv) Every component should have a tendency to retain, under load, its
original state of equilibrium. This is called the condition of stability. Lack
of stability may cause an abrupt change in the shape of a part and the
character of its deformation. Instability may occur at magnitudes of loads
that are quite safe from the viewpoint of strength or stiffness. For exam-
ple, a long thin member subjected to axial compression may become
unstable; it would buckle if the load exceeds a certain limit, even though,
this may be below the limiting load from strength or stiffness consideration.

Thus, we see that the principal objective of mechanics of solids is to
provide us with rational rules for the design of any structural member or
machine element based on the considerations of strength, stiffness, tough-
ness and stability. In view of this broad objective, we may realize that the
scope of our subject is quite vast and the applications are very wide. In
this elementary book on the subject, however, we shall confine ourselves
primarily to structural members of simple geometric form possessing a
considerable degree of stiffness under simple loading conditions. Limita-
tions and the scope of applications will be more evident as we proceed with
the study of our subject. In addition to the relative simplicity of the
methods discussed in this text, they are very useful as they apply to a large
number of technically important problems.

1.2 Generalized Procedure

In mechanics of solids, a general procedure of analysing a system consists

of the following steps:

*Energy absorbed (per unit volume) up to fracture, in a uniaxial test, is generally
taken to be the measure of toughness of a material. However, the energy absorbed (per
unit volume) up to the elastic limit is called “the modulus of resilience’’.
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Step 1. Setting up of an idealized model of the system

First of all, the system of interest is selected. 1t is then isolated from its
surroundings and its characteristics are idealized. The system so obtained
is an idealized model. It should be simple enough to analyse and yet
exhibit the physical phenomenon of the real system.

Any of the following may be selected and isolated as the system of

interest depending upon the degree of sophistication and nature of the
problem:

(a) The entire structure or machine,

(b) Sub-assembly of the structure or machine,

(c¢) A single component of the structure or machine,
(d) An infinitesimal element within a component.

Idealization of the system is achieved through simplification of the charac-
teristics of the real situation. For this purpose, a distinction is clearly made
between the essential and non-essential features of the actual system. Non-
essential features are then neglected in the analysis. Essential features are
further simplified. Some of the simplifying procedures are as follows:

(a) The geometrical form of the real system may be approximated to
some simple form, e.g. rods, plates, shells, blocks, etc.

(b) Some basic assumptions are made regarding the properties of the
material. These assumptions are common to all the problems dealt within
this book. They are discussed in Art. 1.3.

(c) A few more assumptions are made which are appropriate only to a
particular problem.

It may be realized at this stage that, in view of a large number of
assumptions and simplifications, the methods of mechanics of solids are
simple and approximate, and are, therefore, of more practical importance.
A rigorous treatment of similar types of problems often with the help of

cumbersome mathematical apparatus is generally done in The Mathematical
Theory of Elasticity.

Step 2. Analysis of the forces on the idealized model

This step involves the analysis of forces, either external or internal.
External forces arise due to interaction of the system with its surroundings.
These forces and their general classification have been discussed in Art.
1.4. Internal forces come into play within a system to resist the action of
the external forces on it. A brief account of how these forces arise has been
given in Art. 1.5. The method of sections, which reveals the internal forces,
has been discussed in Art. 1.6. The concept of stresses, which are the
measure of the distribution of internal forces, has been introduced Art. 1.7.

In the general analysis of forces, equilibrium equations of statics are
used. Cases where statics alone may fail to analyse the forces are called
‘statically indeterminate.” It may be mentioned here that determination of
stresses is inherently a statically indeterminate problem. In order to analyse



