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Factory Automation: Case Study in
Production-Line Management

In the automated production line of the new Candy
washing machines, the whole manufacturing, assembly
and inspection operations are performed and managed
by 30 robots.

1. Line Characteristics

The line has been designed to manufacture a new class
of washing machines. It can be operated by humans or
by robots and its flexibility allows the production of all
the different models. The whole line consists of 30
microcomputer-controlled handling robots operating
machines, assembly equipment and transfer machines.
It is subdivided into a drum manufacturing line, a tub
manufacturing line and a drum and tub assembly line.
Candy required a flexible line to allow the manufacture
of different models in accordance with market require-
ments for machines with top loading or front loading
and of different capacities (drum depths).

The robots used are hydraulically powered and of
modular construction with Cartesian axes and move-
ments as follows.

(a) Traversing: the carriage carrying the robot can slide
on two columns, blocked at their extremities by
floor-mounted pedestals; the traversing stroke can
reach 2500 mm.

(b) Rotation: obtained from a rotating table fixed to
the traversing carriage; the angle of rotation is 180°.

(c) Vertical: the robot carriage slides on two vertical
columns with a maximum stroke of 500 mm.

(d) Horizontal: a second carriage, carrying the robot
arm and gripper, slides on two horizontal columns;
the arm stroke has a maximum value of 1000 mm.

The maximum weight which can be manipulated is
100 kg.

The modular construction of these robots means that
only the axes which provide the movements necessary
for a given application need be provided, thus yielding
obvious economic benefits. The grippers are designed
specially for each workplace and are equipped with the
mechanical parts and electronic sensors to fit the various
parts to be manufactured.

All the robots are microcomputer-controlled. A mas-
ter microcomputer provides management of the line and
communications between robots.

2. Drum Manufacturing Line

The line that manufactures the drums is shown in Fig.1.
It consists of:

(a) one stainless steel sheet roller,
(b) one punching shear press,

(c) one transfer cut pack system,

(d) one calender,

(e) three folding machines,

(f) one shaping machine,

(g) two drum transfers,

(h) two rolling machine tools, and
(i) twelve robots.

At the beginning of the line a coil of strip of the desired

Figure 1
Drum manufacturing line
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Figure 2
Calendering of bands

depth is positioned and automatically unrolled, then cut
by the shear press into bands of the right length and
packs of a prescribed height. The pack of bands, on
requirement by the robot, is fed to workplace A.

2.1 Workplace A: Band Calendering

At this workplace (Fig. 2) the bands of strip are
calendered. The bands are stacked on a conveyor (height
300 mm) and are taken one at a time by the robot and
positioned at the calender entry. At the calender exit
the band is taken by another robot. The conveyor is
positioned at one side of the calender. When all bands
of the pack are calendered, the conveyor sends another
pack, and so on.

These bands, positioned on the conveyor, are the
future front drums. In front of this pack is positioned
another pack of the same height; these bands when
calendered are the future top drums.

The forms of band to be manipulated having been
analyzed, a gripper was designed able to handle all the
bands. This gripper has six vacuum suckers connected to
a vacuum pump in groups of four plus two. The six
suckers allow front drum band handling, whereas the
four suckers allow only top drum band handling. They
have a soft-landing device to achieve perfect adhesion to
the band.

The suckers are fixed at the end of the robot arm in
such a way that allows top band pickup without inter-
fering with the pack. Sensors fitted on the gripper are
able to detect the presence of a band and stop the arm
descent. The microcomputer has memorized all the
different programs to allow handling of the bands, top
or front.

2.2 Workplace B: Band Folding

At this workplace the bands are folded (Fig. 3). At the
calender exit the bands are presented wrapped on a
support; they are then picked up and positioned on the
folding machine. During this operation the band must be
kept in position; afterwards it is rotated 90° and placed

1598

Figure 3
Folding of bands

on the conveyor. Examining the folding machine we
notice that the band must be followed and kept in
position of folding. This operation is performed only on
front drum bands; the top bands are treated differently.
After the loading operations of the folding machine,
contact must be maintained with the band rims in order
to keep the bands in the right position.

The grippers consist of two groups mounted on a
device at the end of the arm. The first group consists of
three grippers that take the band at the calender outlet
and bring it to the folding machine, holding the band
rims to allow folding operations to take place. The
second group consists of three grippers that take the
band and place it on the conveyor after having rotated
it through 90°. The conveyor is equipped with reference
devices, as from this moment the folded band must be
kept oriented.

2.3 Workplace C: Shaping Rims and Blades

At this workplace (Fig. 4) there are two robots. The first
takes the band from the conveyor and rotates it through
110°, then places it oriented on the blade shaping

Figure 4
Rims and blades shaping
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machine. The second, simultaneously with the first, takes
the band from the blade shaping machine and places it,
after rotation through 31°, on the rim shaping machine.
Then it draws the band from this latter machine and
places it on a conveyor in one of two possible positions,
depending on the production needs.

All the grippers have the same configuration. The first
robot has three grippers set at 120° to one another, fitted
on a device able to rotate through 110°. The second
robot has two grippers that can rotate the band through
120°.

2.4 Workplace D: Bottom Plate Folding

At this workplace (Fig. 5) two robots carry out the job.
The first robot takes the band from the conveyor and
places it oriented on a stepping conveyor which has a
template to receive the parts. The second robot takes one
bottom plate at a time from one of two pallets, orients
the plate into the right position and places it on the
band. After positioning of the bottom plate on the band,
the robot orders the conveyor to advance to move the
band with the bottom plate under the folding machine.

The first robot has a group of three grippers mounted

Figure 5
Bottom plate and abutment folding

at 120° to one another on the arm extremity. The
grippers of the second robot are a group with suckers
which have a soft-landing device, a vertical movement of
1000 mm and centering and orientation systems. The
sequence of the movements is as follows:

(a) descent onto the pallet and onto the pile wanted,
(b) pickup of one bottom plate,

(c) centering of the bottom plate in relation to the
center of the suckers, and

(d) rotation of the bottom plate, by means of optical
sensors, until the correct orientation is reached.

2.5 Workplace E: Abutment Folding

At this workplace (Fig. 5) the same operations are
performed as at workplace D, except that the first robot
transfers the drum from conveyor 1 to the conveyor 2,
rotating it through 180°. It has a gripper able to take the
drum at the side.

2.6 Workplace F: Star Wheel Assembly

There are also two robots at this workplace. The first
takes the drum from the conveyor and places it on the
riveting machine. The second robot takes an oriented
star wheel supplied by a conveyor and places it on the
drum in a predetermined position. The riveting machine
rivets the star wheel on the drum. The same robot then
loads the drum onto a conveyor.

In this case there are standard grippers, pneumatically
operated, with special fingers.

2.7 Workplace G: Drum Positioning for Dispatch

The finished drum is conveyed in a specific position to
the roller conveyor exit. The robot picks up the drum,
taking it by the star wheel, turns its arm through 90°
and runs along the overhead conveyor to position the
drum at the nearest free position. This robot has a
special tracking program allowing it to reach the nearest
free position and place the drum, adjusting itself to the
overhead conveyor speed if it changes. Tracking and
centering are achieved by means of optical sensors.

This robot also has standard grippers, pneumatically
operated.

3. Conclusions

The production capacity of this line is 420 drums per
hour. Along the whole line, ~70m long, there are
normally only two people ensuring that the right
operations are carried out.

Candy has invested in this line to obtain a constant
output as well as a large increase in productivity. At the
same time, a high quality level has been achieved, as well
as the capacity to maintain it unchanged over time,
safeguarding it against the inconsistency of human
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work. The efficiency, assessed over two years, is very
satisfactory for standard automatic equipment.

Staff reaction has been very positive, without dis-
turbances, as personnel did not see the introduction of
robots as a threat to work but as a change in functions
from heavy working conditions to more satisfactory
ones; in fact there have been no dismissals.

See also: Industrial Systems: Robot Integration

C. Castoldi

Fate Modelling of Organic Chemicals:
Case Study

PEST (Park et al. 1980, 1981, 1982) is a dynamic simul-
ation model for evaluating the fate of toxic organic
material (TOM) in freshwater environments. It rep-
resents the time-varying concentration (in ppm) of a
given TOM in each of as many as sixteen carrier com-
partments; it also computes the percentage distribution
and half-life of the TOM in each of the carriers. Possible
carriers include phytoplankton, macrophytes, zoo-
plankton, waterbugs, zoobenthos, fish, particular
organic matter, floating organic matter, clay and water
(with TOM in the dissolved phase).

PEST simulates TOM degradation by hydrolysis,
oxidation, phytolysis, microbial metabolism and
biotransformation by higher organisms; it simulates
TOM transfer by solution, volatilization, sorption,
absorption onto gills, consumption, excretion, defec-
ation, biodeposition, mortality and throughflow. These
are subject to time-varying environmental factors such
as pH, temperature, dissolved oxygen, wind, solar radi-
ation and biomass and condition of organisms.

PEST is an interactive, user-oriented model with ten
commands. The user can edit parameters and driving
variables, display process-response curves of all com-
binations of processes and driving variables, run a simul-
ation for any length of time, print any or all state-
variable results, debug loadings and rates and graphics-
device plots, dump common block contents, and access
an extensive help file.

The model is written in standard FORTRAN IV and
will run in 22 K on a PDP11 with overlaying. It has also
been run on an IBM 3033. The program is modular
and well structured and is easy to understand. System-
dependent features are restricted to two optional
subroutines: one that handles operations such as file
numbering and time calls and one that provides an
interface to graphics terminals and plotters.

PEST is a process-oriented evaluative model. As
such, it is intended to be used primarily to indicate the
relative importance of the various processes under well-
defined environmental conditions and to determine the
environmental compatibility of particular organic mat-
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erials. The model can also assist in the extrapolation of
data from laboratory experiments and microcosms, to
natural environments.

It combines detailed chemical kinetics and bioener-
getics to permit examination and evaluation of the
behavior of toxic organic materials in the context of the
entire aquatic ecosystem. PEST is capable of simulating
the time-varying concentration of a toxic organic
material (TOM) in each of as many as sixteen carrier
compartments. The sixteen state variables can be para-
metrized to represent a variety of TOM-carrier associ-
ations typical of aquatic ecosystems.

The state-variable equations are ordinary differential
equations with source and sink terms for the various
processes that result in additions to, and losses from,
the carriers. The source and sink terms for the state
variables are represented by process equations. Most of
the process equations are nonlinear and involve several
environmental factors. Output from the model includes

(a) the time-varying concentration of the toxic material
in each carrier (in ppm),

(b) the percentage distribution of the toxic material
among the carriers, and

(c) the half-lives of the toxic material in each carrier.

One can also obtain plots of the degradation rates,
both as they vary through time and as a function of
environmental factors.

The model has been verified with process-level
laboratory data for several compounds and with eco-
system data from fish ponds in Missouri and Israel,
from an experimental stream in Minnesota, and from a
reservoir in Iowa. The site constants and environmental
driving variables for these ecosystems constitute useful
“prototype” data sets that enhance the value of the
model for evaluative purposes. :

Data requirements depend on the intended use of the
model. If PEST is to be used as an evaluative model,
as originally intended, then default data on prototype
sites (such as the verification sites) may be sufficient to
characterize the behavior and fate of a toxic organic
material; therefore, site data would be unnecessary. If
the model is to be applied as a diagnostic tool in order
better to understand the fate of a compound at a par-
ticular site, then an accurate characterization of the site
is required. If the problem involves bioconcentration in
a particular group of organisms, then it will be necessary
to characterize accurately the metabolic requirements
and feeding preference of the organism.

The philosophy of verification has been to use avail-
able parameter values, confirm the validity of the pro-
cess equations by inspecting the process-response curves
(such as are presented in the previous section), and
then apply the model to the particular site without
calibration. If the fit to the observed data is not accept-
able the formulations are re-examined and improved,
but the parameter values are not changed. This
approach was taken because it was felt that there would
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not be opportunity or rationale for “fine-tuning” the
parameter values in PEST using observed data when it
was used as an evaluative model for newcompounds.

See also: Toxic Chemicals Assessment: Simulation Model-
ling; Water Quality Modelling: Case Study; Aluminum and
the Fate of Nutrients and Toxic Substances in Terrestrial
and Freshwater Environments; Limnology: Dispersion of
Toxic Substances
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Fault Trees

A fault tree is a hierarchical representation of the
probabilities for failure of various functions of a system.

See also: Trees

A. P. Sage

Feature Selection: Fuzzy Classification

Classification is a technique which enables us to look
for regularities in a broad sense. Classification problems
may be divided into two categories: pattern recognition
and clustering. In pattern recognition it is assumed that
the names of classes and samples characterizing these
classes are known; the aim is to place new objects into
the classes using a sort of inductive generalization based
on the knowledge derived from these samples. In clus-
tering, the aim is to partition a given collection of
objects into a number of classes in such a way that
objects within each class are strongly similar to each
other, while objects of different classes are appreciably

less similar. The first step in solving both problems is
the selection of significant characteristics of the objects
considered. This step is called feature selection and it
may be treated as a kind of data reduction.

Bellman, Kalaba and Zadeh were the first to propose
the use of fuzzy set theory in classification (Bezdek
1981).

1. Statement of the Problem

Let W={w,,...,w,} be a set of objects. To handle
them we assign to each w € W the values of a finite set
of parameters (called features) considered relevant for
the object. This way w is associated with a mathematical
object x = m(w) = [m,(w), . . ., my(w)] where m; is the
measurement procedure connected with feature i and
mw) is the feature value. (There are usually many
mathematical objects x that may be associated with w.)
We call x a feature vector or pattern, and we denote X
the set of all patterns so obtained. Usually it is assumed
that X C R’ (R is a set of reals). However in practical
problems, features may very often be valued only
linguistically (e.g., in diagnosis). Fuzzy set theory offers
powerful tools for such cases (Zadeh 1976, Sanchez et
al. 1980). Now suppose that ¢ is a number of classes
into which the objects from X should be placed. Again
in practical problems we focus on the question of how
closely the value of x agrees with the characteristics
distinguished for the ith class, rather than whether x is
a member of class i. This is because the substructure in
real data is rarely so distinct that every member in the
collection X is most realistically described as a full
member of a single subset. Moreover, especially in
large-scale systems, classes may be defined in a vague
way only. To overcome these difficulties we introduce
the function u;:X—[0,1] (called membership
function) that allows every individual x € X partial
membership in all of ¢ subsets. In general, information
of this kind is not of a probabilistic nature.

To give conceptual frames for the classification
theory, Zadeh (1976) has pointed that in practice man
uses “opaque” algorithms A, to classify objects (i.e.,
their explicit description is not available). These algor-
ithms act on real objects w € W. Following this idea,
the classification procedure consists of two main steps:

(a) feature selection: select a small set of possible
simple measurement procedures m in order to turn
w into x;

(b) convert the opaque algorithm A, into a transparent
one A, (i.e., with known explicit description) such
that the results A, (w) and A [m(w)] lead to the
same conclusion.

2. Fuzzy Clustering Methods

The simplest formulation of the problem may be stated
as follows. Let w;,, w; € W and x;, x; denote their math-
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ematical representations. The aim is to find an algorithm
A, such that

A"(X,, /) Aop(wi’wj)

=r(x;,x;) =ry, ij=1,n (1)

where r; represent grades of similarity between patterns
x; and x;. This way we obtain a mapping r : XxX — [0, 1]
called a fuzzy relation (Dubois and Prade 1980). The
immediate implementation of this idea leads to the use
of a similarity relation, i.e., the fuzzy relation that
is reflexive, symmetrical and transitive. The similarity
relation should provide the inferences of the form

IF “it is desirable to classify w, v in the same cluster”

AND “it is desirable to classify v, z in the same

cluster”

THEN ¢“it is desirable to classify w, z in the same

cluster.”

Apply the standard fuzzy logic rules (Dubois and Prade
1980) to this statement we obtain the concept of (max—
min) transitivity, i.e., a fuzzy relation is transitive iff

ri = m’?x [mm(r‘k,r,q)] (2)
Such a defined similarity relation is an equivalence
relation and it possesses the property: all its a-cuts
are equivalence relations, where by a-cut we mean a
nonfuzzy subset r, of XxX consisting of pairs for which
r(x, x;) = . Here, a means the minimal strength of
relationship among the elements of r,. Moreover
s, CTa if ;> a,.

To cluster a given data collection we start from a

reﬂexnve and symmetric relation s (expressed as a matrix

= [s]) defined on XxX. The values s; are determined
sub]ectxvely or using some similarity index (e.g., cosine
function, Tanimoto measure, etc). To find the similarity
matrix R we “multiply” (in the sense of max-min
composition defined by Eqn. (2)) matrix § g times
(g < n — 1). Other algorithms to find similarity relations
are mentioned in Dubois and Prade (1980) and else-
where. Thresholding (in the sense of a-cuts) matrix R
we build a nested hierarchy of hard (i.e., nonfuzzy)
partitions. Dunn (1974) has shown that because (max-
min) transitivity is equivalent to the ultrametric
inequality, the resultant hierarchies are in fact a subset
of single linkage hierarchies known from graph theoretic
methods for clustering. This method was proposed by
Tamura et al. (1971) and was used, for example, in
an information retrieval system (Negoita and Ralescu
1975).

Ruspini (1980) has observed that the application of
Lukasiewicz’s Aleph-1 logic to the IF . . . THEN state-
ment displayed above leads to the concept of (max-T)
transitivity:

r. = max max(r, +r
if ik kj
1<k=n

-1,0)] (©)
The reflexive, symmetric and (max-T)-transitive

relation is called a likeness relation. Likeness relations
form the largest class of equivalence relations (similarity
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relations are very sparse among them) and they have
been studied extensively by Bezdek (1981). Ruspini
(1980) has shown that a necessary and sufficient con-
dition for the existence of fuzzy clusters is that a relation
R defined on XxX be a likeness relation. All fuzzy sets
that are elements of the quotient X/R are clusters and
can therefore be chosen as components of a clustering of
X. This observation provides a basis for new clustering
techniques.

Ruspini was also the first to suggest the use of the
objective function method for fuzzy clustering, and
Bezdek (1981) applied this methodology in a very con-
structive manner by introducing the infinite family of
fuzzy ISODATA algorithms. The motivation was that
the hard ISODATA (Duda and Hart 1973) always yields
some partitions even when compact and well separated
clusters do not exist. Hence, when it is not known in
advance that such clusters are actually present, infer-
ences drawn from hard ISODATA partitions can be
erroneous. Following Ruspini a fuzzy nondegenerate
partition of the set X is defined by specifying a set of
functions u;: X—[0,1], i=1,c satisfying the
conditions

21 ui(x) = 1a 2

xEX

uy(x) >0 4)

The first condition ensures that each x € X must have
a total membership in X of unity (this membership may
vary arbitrarily among the fuzzy subsets partitioning X),
while the second condition means that each of ¢ clusters
is nonempty. It is convenient to represent a fuzzy par-
tition as a matrix U = [u,] where u, = u,(x;). The set
of all partitions so defined forms a fuzzy nondegenerate
partition space denoted M. In particular it contains
the space of all hard partitions M, (defined by the
characteristic function k; : X — {0, 1}). The M provides
a useful mathematical structure for classification of
models (Bezdek 1981): it is a closed, compact and
convex subset in one positive orthant v, (the vector
space of all (¢ X n) matrices) with cardinality card
(M;) =n(c—1). (This is a very significant dimen-
sionality reduction in comparison with dim(M,)). Study-
ing the connection between M;, and Ry (the space of all
likeness relations defined on Xx.X) it was shown (Bezdek
1981) that the composition UT (sum, min) U induces a
unique likeness relation that enables one to convert
fuzzy membership of patterns into a metrical relation-
ship among these patterns.

To find a fuzzy partition U, Bezdek proposed the
global criterion function

(U, 0) = E 2 :k”xk - U ” (5)

k=1i=1

where U € M, v = (vy, . ..,v.), v € R is a fuzzy cen-
troid and ||| is any differentiable norm on R°. The
algorithm consists of the following steps.

Step 1: Choose an initial partition U,.
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Step 2: Compute the fuzzy centroids v, due to equation

o= Suin/ S =T ©
k=1 k=1
Step 3: Compute U according to

it = 3 (b = olfbee = o,

i=1,c, k=1,n (7)

Step 4: Find the maximum membership defect
|U = U,|. If less than some prespecified tolerance €
then stop; otherwise relabel U— U, and go to Step
2

’ ’ . . .
To evaluate the validity of c, two measures of partition
fuzziness are considered:

F(U) = tr(UU"), H(U) = 21 ,El uyloguy (8)

Minimization of H (or maximization of F) leads to an
optimal choice of ¢ for U € M,.. For m = 2 the result of

the algorithm usually reflects the actual fuzziness of the -

clusters in X. (The case m =1 corresponds to hard
ISODATA.)

Fuzzy ISODATA ensures that the misinterpretation
of the substructure of X is less probable in comparison
with a hard algorithm. Fuzzy ISODATA has been
applied to medical taxonomy, to Bayesian unsupervised
learning, and to feature selection for binary data
(Bezdek 1981).

Other clustering techniques are reviewed by Negoita
and Ralescu (1975), Dubois and Prade (1980) and
Bezdek (1981).

3. Fuzzy Pattern Recognition

Using Zadeh’s terminology, a pattern recognition pro-
cedure may be formulated: having the set of measure-
ment procedures m convert given opaque algorithm A4,
into a transparent one such that acting on m(w) yields
the same conclusions as A,,.

Conceptually the simplest algorithm is that based on
the fuzzified Bayes approach. The fuzzification may be
performed in a number of ways. The first gives the
concept of the probability of a fuzzy event (Dubois and
Prade 1980). Assume that each of classes F; is described
as a fuzzy set F, = {h(z))/z;, j=T,s} where z; denotes
the name of the jth feature and A(z)) € [0, 1] is a grade
of intensity of this feature for class i. The probability
that the object belongs to F; given by sample x is:
P(F)x) = P(x, F,)/P(x) where P(-) are probabilities of
fuzzy events. The rule for choosing an appropriate class
corresponds to the minimization of the probability P,
of discrimination error (Duda and Hart 1973). When
we use a sequence x(k) = (x,...,x,) of independent
elementary observations and k— o, the upper bound

for P, no longer converges to zero in average value
(Asai et al. 1977). This provides the rule for when to
stop observations. The second way of implementing the
fuzzification Bayes approach offers the theory of fuzzy
measure (Seif and Aguilar-Martin 1980). As in the
discrete case, belief function is a fuzzy measure and we
obtain the third mutation of the Bayes approach. The
model built using this concept has an interesting
property: it includes the possibility of discovering new
classes (Smets 1981).

The next method involves the use of the linguistic
approach to classification (Sanchez et al. 1980). Here it
is assumed that classes and patterns are both defined
linguistically. Each class F; is defined by a statement of
the form “z{ is Z{ and...and z{ is Z!” where Z are
linguistic terms like “decreased,” “normal,” etc., mod-
elled by corresponding membership functions defined
on the appropriate universes Y;. All feature values x; of
pattern x are also evaluated linguistically. The grade
u(x) of belongingness of a given object to a class i is
computed as

u,(x) = min {;gg [min(h (), b, (y)]} ©

1sj<s

A review of another pattern recognition technique
(including syntactic methods) is given in Dubois and
Prade (1980) and in Bezdek (1981).

4. Feature Selection

This problem is both significant and difficult. Con-
ceptually it may be stated as in point (a) of Sect. 1.
Whenever X is binary valued, the optimal v;s arising
from fuzzy ISODATA (see Eqn. 6) possess theoretical
properties relevant to this problem (Bezdek 1981). The
learning scheme used by Seif and Aguilar-Martin (1980)
may also be of use: resulting fuzzy measure expresses
the grades of importance of particular features. An
overview of many popular approaches to feature selec-

tion in a nonfuzzy case is available in Duda and Hart
(1973).

See also: Computer-Assisted Medical Diagnostic Systems:
Fuzzy Methods
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Feedback Control: History

Before the middle of the nineteenth century the types
of feedback device in use were limited: control or regu-
lation was largely synonymous with the governor. It is
only since World War II that a rapid growth in the
use and understanding of feedback mechanisms has
occurred. However, feedback devices were known in
antiquity; in the writing of the Greeks of the Hellenic
period there are numerous examples of feedback
devices, the earliest known device being the waterclock
of Ktesibios (about 300-275 BC). It was not until the
seventeenth century that any feedback systems, desig-
ned independently from the ancient devices, appeared
in Europe. The first was the temperature regulator of
Cornelis Drebbel and this was followed by many more
temperature regulators.

The replacement of human muscle power by animal,
water, wind and other sources of power marked a fun-
damental change in technological thought, for in the
separation of the provision of power and the operation
of the process of production, that is, the manipulation
of the tool or the machine, the need for control or
regulation became apparent. In the eighteenth century
the use of nonmanual power sources became more
widespread and, as a consequence, the need to regulate
the prime mover—be it wind, water, animal power (at
the end of the eighteenth century an automatic goad for
a horse was proposed) or the newly available steam
power—became urgent. It was also during this period
that an understanding of the concept of feedback began
to develop, although not through the consideration of
mechanical devices but through “political economy.”
The word feedback, however, was not used until the
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twentieth century: it came into use in connection with
the development of the electronic amplifier (Bennett
1979).

1. Hellenic Period

The inventions of the Hellenic period are usually associ-
ated with the names of three mechanicians—Ktesibios,
Philon and Heron—and it is among their works that
the earliest known feedback devices are to be found.
Ktesibios, who lived in Alexandria and served as a
mechanician to the Ptolemys, is thought to have lived
in the first half of the third century BC and is credited
with the first known feedback mechanism: a float valve
regulator for a waterclock. The mechanism is shown in
Fig. 1.

The principle of operation of this type of waterclock
is that the time is told by the level of water in the
receiving vessel and hence, for accurate timekeeping,

.the rate of flow of water into the vessel has to be

constant. A constant flow rate can be obtained if the
level of water in the supply vessel BCDE is maintained
at a constant level; the float G in the box senses the
level of the water and its tip acts as a valve which opens
as the water level falls and closes as the level rises. The
operation is shown in block diagram form in Fig. 2.

The measurement of time was important to the highly
organized societies which existed and continued to exist
in the Mediterranean area. As a consequence, the float
valve continued, over many centuries, to be an impor-
tant component in the design and construction of water-
clocks, since these provided the most accurate and
reliable means of measuring time intervals.

B C
&

Figure 1
Float valve regulator for the waterclock of Ktesibios
(after Mayr 1970)



