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Preface

Windpumping is an established technology, with over one million
windpumps in use worldwide. A windpump needs no fuel, 1little
maintenance and it usually lasts 20 years or more. Designs exist
which are suitable for small-scale local manufacture. The aim
of this handbook is to help potential users and decision makers
take advantage of the benefits that windpumps can offer.

This handbook was first written for a windpump familiarisation
seminar held in Nairobi in November 1986. The seminar was
organised and presented by I.T. Power, hosted by the Ministry of
Water Development of Kenya and funded by the Overseas Development
Administration.
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CHAPTER 1: INTRODUCTION

1.1 Purpose of this Handbook

Water for people, animals and crop irrigation is an essential
need in every country. Frequently this water has to be pumped
from the ground; the pumping requires energy. In rural areas
this energy has traditionally been provided by people operating
hand pumps or animal pumps. Where mechanized power is available
it is most commonly an internal combustion engine burning petrol
or diesel o0il. Recently there has been a growing interest in the
new technology of solar-powered water pumps and a revival of
interest in windpumps.

There are many good windpump designs, both traditional and modern
lighter weight ones, currently available. These machines have
high performance and good reliability. The purpose of this
Handbook is to provide decision-makers and potential users of
windpumps with the basic information on present-day:

e windpump technology

® economics

® sizing to meet domestic or irrigation demand

® procurement

® installation

e maintenance.
It has been assumed throughout the Handbook that the reader is
familiar with the basic concepts and units of energy, power,

flow, density, etc. A comprehensive bibliography is appended for
those readers who wish to study windpumps in greater depth.



1.2 Windpump technology is time-proven

A brief history of windpumps

The ancient Egyptians used wind power 5000 years ago to propel
boats. It is uncertain when wind power was first used on land to
power rotating machinery but it is estimated to be about 2000
years ago. Historical records show that windmills definitely
existed in 200 BC in the area now known as eastern Iran and
western Afghanistan. This area receives constant winds from the
steppes of Central Asia during and after harvest time each year,
called the "Wind of a Hundred Days". The Chinese have used
windmills for low lift paddy irrigation for many centuries.

About 1000 years ago horizontal-axis sail windmills were being
used around the Mediterranean. By the 12th century windmills had
reached northern Europe. They became an important part of the
industry of both Britain and the Netherlands in the centuries
that followed. In Britain they were mostly used for milling
grain; in the Netherlands many were used for dewatering
polderland.

By the 18th century windmills were one of the highest forms of
technology. They could produce 30-40 kW of power (which is about
the same as the power of a small motor car). With the advent of
steam power and later the internal combustion engine in Europe,
the incentive to develop windmills disappeared. Instead,
windmill development continued in the USA. In the mid 19th
century settlers were moving into the Great Plains where there
was a shortage of fuel and transport was difficult. With the
need for water and the steady, regular wind across the Great
Plains, windmills were an ideal technology. By the 1880's the
familiar all-steel American multi-bladed farm windpump had
evolved. It looked not much different from many that are still
in production today.

Past experience which has led to the adoption of present-day
windpump designs

Most modern efficient windpumps
are horizontal axis, multi-bladed
(see Figure 1). Other designs
have been tried in the past and
have proved less satisfactory for
water pumping. They are briefly
described below:

Figure 1:

Multi-bladed
horizontal-axis
windmill (side
view)




Figure 2:
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Three-bladed
horizontal-axis
windmill

(side view)
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Figure 3:

Schematic diagram
of Savonius rotor
(side view)

2- or 3- bladed horizontal-axis
windmills are used for
electricity generation. They are
not suitable for water pumping
directly because

1. they cannot produce enough
torque to start a piston
pump working; and

2. they rotate too quickly to
directly drive a recip-
rocating pump. These wind
turbines are also more
difficult to manufacture
owing to the precision
engineering needed.

However they could be used
indirectly for water pumping by
generating electricity and using
this to drive electric pumps.
This option is expensive but may
be suitable for some locations or
when a large amount of power is
needed.

Savonius rotors are turned by the
drag force of the wind mostly,
rather than the 1ift force. They
are therefore inefficient and
turn very slowly. (See Sections
1.3 and 2.1 for explanations of
drag and 1ift forces).
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Figure 4: Panamones
(plan views)
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Figure 5:

Panamones are turned entirely by
the drag force of the wind. They
suffer the same disadvantages as
Savonius rotors.

Cross flow or Darrieus wind
turbines are attracting some
attention at present. However
they are unsuitable for water
pumping because they cannot
normally self-start. Even if
they are modified to enable them
to self-start they cannot produce
sufficient torque +to start a
pump. They are difficult to
protect from storm damage and
have not yet been manufactured
more cheaply than horizontal-axis
rotors.

Schematic diagram of

Darrieus wind

turbine (side view)

remainder of this Handbook concentrates on multi-bladed
horizontal-axis windpumps as the only practical, commercially-
available technology for water pumping at this time.



1.3 The wind energy resource

Many areas of the world are sufficiently windy for windpumps to

be a realistic option for pumping water. Figure 6 shows a
contour map of the average annual wind speeds for the world
(Reference 1). It must be remembered that, in general, the basic

requirement for wind to be a reasonable option for water pumping
is that the average wind speed in the most critical month (i.e.
the month where the demand for water is greatest in relation to
the wind energy available) is greater than 2.5 m/s (6 mph or 5
knots). The wind will vary from day to day and month to month.
It 4is dimportant that +there is sufficient wind available
throughout the period when water is needed. If the water is for
irrigation it may be needed for only a few months, but if the
water is for domestic consumption, there must be sufficient wind
all year. It is advantageous to have reliable windspeed data for
at least a year to decide firstly whether a windpump is a
possible option, and secondly what size of windpump to use, and
how much water storage is needed.

This section briefly explains how to determine the energy
available from the wind if the wind speed is known. Section 3.1
will explain how, where and how often to measure wind speeds.

The effect of wind speed

The power in the wind, and therefore its energy,is proportional
to the cube of the wind velocity. This means that as the wind
speed increases, the power available increases much faster. For
example, in very 1light winds there is about 10 W/m’ whilst in
hurricane-level winds there is about 40,000 Wﬂf . This extreme
variability of the wind power strongly influences most aspects of
system design, construction, siting, wuse and economy. In
comparison, the solar energy resource is much 1less variable,
there being about 100 W/m? in weak sunshine and 1000 W/m? in the
strongest sunshine.

The equation describing the power in the wind is:

Power| =|1/2| x |Density of air| x|Cross-sectional area|x (Velocity)3
in W in kg/md in m? in m/s

The effect of air density

The density of the air affects the energy available to a very
much lesser extent than the wind velocity. However it should not
be ignored. The density of the air is affected by:
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1. altitude
2. temperature
3. atmospheric pressure.

The effects of temperature and atmospheric pressure are very
small compared with altitude and may therefore be ignored.
Allowance should be made for altitude, however. For example at
an altitude of 1000 metres the energy available from the wind at
a given wind speed is reduced by 11%.

Table 1 gives the altitude correction factors which should be
applied to the air density in order to calculate the available
wind energy. Air density at sea level is 1.2kg/m? . Figure 7
shows the same information graphically on an energy-versus-wind
speed graph.

Altitude in metres 0 1000 2000 3000
above sea level

Air density 1.00 0.89 0.78 0.69
correction

factor

Table 1: Altitude correction factors for air density

Example: To find the air density at 2000 m

Air density = Air density X Correction
at 2000 m at sea level factor
Air density = 1.2 x 0.78

at 2000 m
= 0.94 kg/m’

However, the wind tends to blow at higher speeds at higher
altitudes. This often more than compensates for the loss due to
reduced air density.

Energy availability

Only part of the energy in the wind is available for use. To
extract all the energy would require bringing the wind to rest
which is impossible. The available energy is extracted by

slowing down the wind and using some of its kinetic energy. The
maximum amount of energy that can, even in theory, be physically
extracted from the wind is 59.3% of the total available. In
practice wind rotors are not perfectly efficient. Good ones will
be able to extract 25-40% of the total kinetic energy.



To find the amount of energy available from the wind

The graph in figure 7 may be used to find out the amount of
energy that is obtainable from the wind by a well-designed
windpump in a typical wind regime.
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Figure 7: Approximate hydraulic energy output of a
windpump rotor for various wind speeds



