Management of New Technologies for Global Competitiveness

Christian N. Madu

Management of New Technologies for Global Competitiveness_____

Christian N. Madu

E9560094

Q

Quorum Books
Westport, Connecticut • London

Library of Congress Cataloging-in-Publication Data

Madu, Christian N. (Christian Ndubisi)

Management of new technologies for global competitiveness / Christian N. Madu.

p. cm.

Includes index.

ISBN 0-89930-713-2 (alk. paper)

- 1. Industrial management. 2. Total quality management.
- 3. Technological innovations—Management. 4. Industrial management—United States. 5. Industrial management—Japan. I. Title.

HD31.M2815 1993

658.5 '62-dc20

92-31712

British Library Cataloguing in Publication Data is available.

Copyright © 1993 by Christian N. Madu

All rights reserved. No portion of this book may be reproduced, by any process or technique, without the express written consent of the publisher.

Library of Congress Catalog Card Number: 92-31712

ISBN: 0-89930-713-2

First published in 1993

Quorum Books, 88 Post Road West, Westport, CT 06881 An imprint of Greenwood Publishing Group, Inc.

Printed in the United States of America

The paper used in this book complies with the Permanent Paper Standard issued by the National Information Standards Organization (Z39.48-1984).

10 9 8 7 6 5 4 3 2 1

Management of New Technologies for Global Competitiveness

Preface

Management of new technologies is a critical issue facing the corporate world today. We have in the recent times witnessed the proliferation of new technologies and, also, a shorter life cycle for these technologies. Increasingly, many executives believe that capital investment in new or advanced technologies is necessary in order to improve productivity. As the United States responds to its declining rate of growth in productivity, automation has assumed a critical role. The importance of advanced and new technologies in enhancing productivity, and in improving quality and competitiveness, is widely accepted. The pressure to manufacture high-quality products or provide high-quality services that meet the specifications and demands of consumers has led to a systemic approach to the management of technology. Many companies today rely on advanced technologies to achieve high precision, maintain tolerance, and provide high value-ended services and products.

Advanced technologies are widely applied in both the manufacturing and the service sectors, significantly influencing the quality of services delivered. For instance, many service institutions such as banks, insurance, and health care have drastically improved the quality of their services by making effective use of technology. Imagine what it would be like to conduct today's financial transactions in a bank that is not computerized. Obviously, the waiting time for a basic transaction would be high, turnout would be low, cash flow would be limited, and customer goodwill would be lost as they developed negative perceptions of the services rendered by that bank. Clearly, these factors would negatively influence the productivity, quality, and competitiveness of the bank. Technology is, therefore, instrumental in the survival of modern corporations.

Today's environment is dynamic and complex. Corporations have to be cognizant of both their operating and their external environments. Hardly a day passes without mention of the competition U.S. companies face, especially from the Japanese. Total quality management has become critical to understanding why American companies are losing their competitive edge. This book tackles this important problem through a holistic approach to the management of new technologies. It considers both manufacturing and service sectors, and looks at different aspects of process technology to determine how it can help achieve global competitiveness.

The book is divided into five parts. Part 1, Total Quality Management, features

xiv Preface

articles that offer pragmatic approaches to the management of quality. The role of expert systems in quality assurance is also presented. Furthermore, a distinction is made between Japanese and American production management systems, and the role of notable quality-management philosophers is described. The articles in Part 2, Selection and Implementation of New Technologies, demonstrate the shortcomings of cost-accounting techniques in justifying the use of new technologies. The authors identify the strategic functions of new technologies that may not be easily captured by traditional costaccounting techniques, and provide procedures to effectively consider tactical and strategic factors in selecting such new technologies. A project-management approach to implementation and adoption of new technologies is also provided. Part 3, Strategic Management, demonstrates the role of top management and technology in improving organizational performance. Emphasis is on specific applications—manufacturing, health care, and information systems. Part 4, Knowledge-based Techniques, deals with the role of artificial intelligence and expert systems in management of new technologies. The articles in this section show how knowledge-based systems can improve the quality of decision making at different levels in the organization. Also, effective use of knowledge to meet organizational challenges is demonstrated. Part 5, Product Design and Inventory Management, deals with performance evaluation of specific technologies, such as flexible manufacturing systems, robotics, and computer-integrated enterprises. Procedures are provided to reduce set-up time in order to effectively manage inventory via a just-in-time system. Product design is also discussed as an emerging competitive factor.

Finally, this comprehensive approach reveals the different approaches to managing new technologies in order to achieve global competitiveness. The systemic approach of this book makes it an important reference book, useful as a basis for courses in new technology management or as a supplementary text for production and operations management classes.

Acknowledgements

I extend my sincere thanks to all the contributors in this book. Your dedication to meet the deadline and produce outstanding research work is rewarding. I hope that you will all be proud of this book. I also thank my editor, Eric Valentine, for his support, and my production editor, Nita Romer for a thorough review of this manuscript.

I especially thank Ms. Diana Ward, Editor, Lubin Letters, at Pace University, who has always been quite helpful and supportive of my research endeavors; Ms. Koula Kilaras, Secretary and Coordinator of the Accounting Department, at Pace University, for her utmost dedication to my work; and my graduate assistant, Thomas Tsai, for conducting library and computer searches for some of the chapters of this book.

Finally, but not least, I especially thank my wife, Assumpta, and our three sons, Chinedu, Chike, and Chidi, for their love and support.

Christian N. Madu

Contents

Lig	ules and Tables	17
Pre	face	xii
I.	TOTAL QUALITY MANAGEMENT	
1.	Strategic Total Quality Management (STQM) Christian N. Madu and Chu-hua Kuei	3
2.	Strategies for Global Competitiveness with Information Technology Christian N. Madu and Chu-hua Kuei	27
3.	A Comparative Analysis of Japanese and American Production Management Practices Roy Nersesian	37
4.	Quality Assurance and Expert Systems John F. Affisco and Mahesh Chandra	73
II.	SELECTION AND IMPLEMENTATION OF NEW TECHNOLOGIES	
5.	Strategic Thrust of Manufacturing Automation Decisions: A Conceptual Framework Christian N. Madu and Nicholas C. Georgantzas	103
6.	A Strategic Decision Model for the Selection of Advanced Technology Chinho Lin, Chu-hua Kuei, John Aheto, Christian N. Madu	123
7.	A New Look at Strategic Capital Budgeting Decisions Rudolph A. Jacob and Christian N. Madu	139

vi		Contents
8.	A Quality Confidence Procedure for GDSS Application in Multicriteria Decision Making Christian N. Madu	149
9.	Project Management in the Adoption and Implementation of New Technologies Adedeji B. Badiru	165
10	. Licensing: An Intangible but Strategic Source of Revenue Vasanthakumar Bhat	183
11	Strategic Cost Analysis as a Global Competitive Weapon Rudolph A. Jacob	195
Ш	. STRATEGIC MANAGEMENT	
12.	Synchronous Production Innovation and Performance in Manufacturing Nicholas C. Georgantzas and Jack Shapiro	207
13.	Strategic Information System Planning in the Health Care Industry— A Case Study Michael J. Corrigan and Chu-hua Kuei	223
14.	Scenario-Driven Technological Development Planning: A Process View Nicholas C. Georgantzas and William Acar	243
15.	Managing Innovative Technologies Chimezie A. B. Osigweh, Yg., and Michael Segalla	261
16.	Setting Priorities for the Information Technology Industry in Taiwan—A Delphi Study Christian N. Madu, Chu-hua Kuei, and Assumpta N. Madu	279
IV.	KNOWLEDGE-BASED TECHNIQUES	
17.	The Role of Artificial Intelligence and Expert Systems in New Technologies Adedeji B. Badiru	301
18.	Knowledge-Based Techniques for Management of New Technologies Bay Arinze	319
v.	PRODUCT DESIGN AND INVENTORY MANAGEMENT	
19.	Product Design: The Next Source of Competitive Advantage	335

Contents	vii
 Reducing Lot Sizes—Analytical Results and Techniques for Implementation John F. Affisco, Farrokh Nasri, and M. Javad Paknejad 	351
Index	369
Contributors	379

Figures and Tables

Figures

1.1	STQM Transformation Process Overview	20
1.2	System Transformation Process	21
3.1	Stable Process	53
3.2	Nonstable Process—Shifting Mean	53
3.3	Nonstable Process—Expanding Variance	54
3.4	Stable Process—Tampering	54
4.1	Expert Systems Architecture	74
4.2	A Frame Representation for Statistical Control Charts	76
4.3	Inference Processes	77
4.4	Screen 1—Sampling First Cut	87
4.5	Screen 2—Categories of Product and Process	88
4.6	Screen 3—Level of Inspectors Training	89
4.7	Screen 4—Record Keeping/Inspection Tradeoffs	90
4.8	Screen 5—Desired AQL	91
4.9	Screen 6—Capability of Vendor	92
4.10	Screen 7—Conclusions	93
5.1	A Model of Manufacturing Automation Decision-Making,	
	Implementation and Control	107
5.2	Hierarchical Network Structure of the Manufacturing Automation	
	Decision-Making Process	112
6.1	Decision Hierarchy of Objective, Criteria, and Alternatives	128
7.1	A Cognitive Map for Strategic Capital Budgeting Decisions	141
7.2	AHP Model for Strategic Capital Budgeting Decision	143
7.3	Significant Criteria to Evaluate Strategies	144
7.4	Comparison Matrix and Weights of Goals	146
7.5	Comparison Matrices and Weights of Resource Allocation Strategies	146
7.6	Resource Allocation Strategy Weights	147
8.1	Quality Confidence Limits	157
9.1	Project Management Steps	168

9.2	Elements of Project Control	168
9.3	Cost/Benefit Analysis of Technology	172
9.4	Technology Conversion Strategies	176
9.5	A Communication Matrix	176
9.6	Functional Responsibility Chart	178
9.7	Technology Transfer Model	178
9.8	Project Technology Transfer Loop	180
9.9	Matrix Organization	181
11.1	Overview of Business Functions, Departments, and Activities	198
11.2	Cost of Light Fixtures A and B	201
11.3	Cross-Subsidization of Products	203
12.1	Initial Two-Dimensional Configuration of Production Innovations	215
12.2	Two-Dimensional Configuration Linking Production	
	Innovations with Performance Improvements	216
13.1	The Formative Years	226
13.2	Organization Model I	229
13.3	The MIS Organizational Matrix at Monmouth	228
13.4	Organization Model II	229
13.5	Perspective: Five Competitive Forces in Healthcare	231
13.6	Ethernet Cable, Vax Processors, and STAR Coupler	233
13.7	The Network at Monmouth Medical Center for Pathology	234
13.8	The Network at Monmouth Medical Center	235
13.9	Integrating DIGITAL's VAX to Fax into Clinical Reporting	236
13.10	Distributed Bedside Reporting via VAX-PC LAN	237
13.11	Digital's Proposed Remote Clustering utilizing FDDI Technology	239
14.1	Scenario-Driven Technological Development Planning Process	247
14.2	ID and CSM of Technological Development Planning	252
14.3	Behavioral Patterns of Investment (I), Productivity (P)	
	and Revenue (R)	254
15.1	Market Segmentation Approach to Training Needs	271
16.1	The Information Systems Industry in Taiwan	280
16.2	A Strategic Framework for the Transfer of Technology	282
16.3	Generation of Criteria	285
16.4	Cognitive Map	286
16.5	Pairwise Comparisons	290
17.1	Expert Systems Structure	303
17.2	Technology Condition and Action Relationships	303
17.3	Formation of a Subset of a Knowledge Base	307
17.4	Technology Relations on Knowledge-Base Sets	307
17.5	Decision Flow Diagram for Justex	311
17.6	Justex Consultation Screen 1	313
17.7	Justex Consultation Screen 2	313
17.8	Justex Consultation Screen 3	314
17.9	Justex Conclusion Screen	314
	Development and Implementation of Robex	316
17.11	Consultation Interface for Robex	316
18.1	Structure of a Knowledge Based System	321
18.2	Commercial Examples of Knowledge-Based Systems	325
18.3	Structure of a Neural Network	328
19.1	Design for Manufacturability	337

Figures and Tables		xi
19.2	Design for Flexible Manufacturing Systems	338
19.3	Design for Assembly	340
19.4	Design for Recyclability	344
20.1	EOQ and Inventory Costs	353
20.2	Percentage Total Cost Savings Over EOQ-SLT	357
20.2	Telechage Total cost surmings over 20 Q 521	
Tables	5	
1.1	Dimensions of Strategic Total Quality Management	6
1.2	New Management Focus and Target for Strategic	
	Total Quality Management	10
1.3	Japan's Green Technologies	12
1.4	Japan's Industry Strategies for the Greening of the Environment	13
1.5	A Contrast of Strategic Total Quality Management to Total	
	Quality Management and Traditional Quality Assurance	15
1.6	Top Management Strategies for Quality Improvement	17
1.7	Major Techniques in the STQM Transformation Process	25
3.1	Simulation of the Normal Variability in a Roll of a Die	49
3.2	Definition of Quality	55
3.3	Managing Quality by Varying Settings	56
3.4	Managing Quality by Reducing Variance	57
3.5	Normal Management Reactions to Test Results	62
3.6	Purchasing: A World Apart	64
4.1	Some Commercial Expert System Building Tools	80
4.2	Potential Quality Assurance Expert System Applications	84
4.3	Framework for the Use of Expert Systems in Quality Assurance	94
4.4	Some Fielded Quality-Related Expert Systems	98
5.1	Decision Making Strategies for Conflict Resolution in the	
	Idea Generation Phase	108
5.2	Significant Factors in Automation Decision	113
5.3	Judgments with Respect to Goal	115
5.4	Goal: Total Productivity Improvement	116
5.5	Judgments with Respect to Goal	116
5.6	Total Productivity Improvement Tally for Leaf Nodes	117
6.1	The Relationships Among Activities and Automation Technologies	126
6.2	The Input Data of the Analysis Matrices	129
8.1	Significant Factors in the Automation Decision	151
8.2	GDSS Questionnaire	152
8.3	Calculations for Study	153
8.4	Priority Indices of the 17 Respondents	156
8.5	Priority Indices of the Criteria	160
8.6	Kolmogorov-Smirnoff Test for Normality	160
10.1	Advantages and Disadvantages of Licensing—from the	100
1011	Licensor's Perspective	185
10.2	Advantages and Disadvantages of Licensing—from the	105
.0.2	Licensee's Perspective	191
12.1	Sample characteristics	211
12.2	Statistical Results Derived in $T = 1, 2$, and 3 Dimensions	213
15.1	The Changing Nature of Skills in Banks and Insurance Companies	269
16.1	Cognitive Mapping—Exploring Linkages	287
10.1	Cognitive mapping—Exploiting Ellikages	28/

xii		Figures and	Tables
16.2	Expert Choice—The Hierarchy of Preferences		289
16.3	Expert Choice—the Group Judgment		292
16.4	Overall Priorities for IT Policy		293
20.1	Comparative Results for Setup Cost-Reduction Case		355
20.2	Comparative Results for Uniform and Normal Lead Time		358
20.3	Optimal Values for Lead Time Variance Reduction and		
	Simultaneous Models		360
20.4	Comparative Results for Lead Time Variance Models (16-we	eek	
	mean lead time)		362

I

Total Quality Management

Chapter 1

Strategic Total Quality Management (STQM)

Christian N. Madu and Chu-hua Kuei

Recently, there has been a significant shift in the quality movement from traditional quality-assurance practice to total quality management (TQM). Total quality management is a customer-driven approach to quality, emphasizing the involvement and commitment of every employee in an organization to provide quality products and services. Customers are increasingly sophisticated, with increasingly more complex demands to be satisfied. The increase in international competition also suggests that only qualitydriven companies will survive. Therefore, for a company to achieve quality, customer needs, expectations, and aspirations must be satisfied. Mercer (1991) (project director, European Council on Quality, The Conference Board, Europe) identifies key quality issues. If TQM is achieved, the company is able to improve productivity, competitive-Although total quality management is today's fashionable ness, and market share. management practice, the literature has failed to indicate how to further improve quality. van Ham (secretary general, European Foundation for Quality Management) points out that "Executives who believe in only applying the existing body of knowledge are missing the point—using existing standards and systems will only give at best, an average result" (1991). In Deming's "Profound Knowledge," he points out that (1) experience teaches nothing unless studied with the aid of a theory; and (2) an example teaches nothing unless studied with the aid of a theory (1986). Therefore, our intention here is to offer a strategy for quality management.

To begin, we broadly define or clarify some of TQM concepts.

- Quality. Quality is seen from the perspective of the customer. Products and services must be produced to conform to customer specifications. Thus, tight specifications must be maintained, and performance standards should ensure that customer requirements are met. With TQM, the attempt is to prevent rather than detect errors.
- Cost of Quality. The cost of quality is based on Juran's cost-of-quality accounting system. This method shows top management the cost of not producing products or services that are "fit for use." As March (1990) notes, money is the language that top management understands. Once they see what quality costs, they listen. Juran has identified four types of costs: internal and external failure costs and prevention and appraisal costs.
- Organizational Culture. Organizational culture must change to embrace the new focus on customer-driven quality. A flexible, horizontal management approach can effectively implement TQM. Every employee, from top to bottom, must be committed to TQM as a business strategy. A never-ending commitment to continuous improvement must be

maintained if TQM is to be achieved.

- Process of Change. Change is inevitable in a "new" organization if total quality management is emphasized. The change may include new processes to adopt more precise technologies; flexible and efficient human resource development through education, training, and retraining; shifts in communication patterns and information flow; increased power sharing through teamwork and greater responsibilities for workers; top management commitment to and participation in total quality management; a heightened understanding of customer need. These new directions necessitate management of change in a proactive manner to achieve organizational goals and mission, and accomplish the vision set by the organization.
- Quality Improvements. Quality is improved only if potential problem areas can be isolated and measures adopted to prevent rather than cure quality problems later. Obviously, quality improvement starts with clear and concise organizational objectives that are customer focused. The process technology and human resources should target specific outcomes rather than outputs. To effectively achieve this, customer requirements must be fully understood. Improving quality also requires maintaining quality from suppliers. They should not be selected simply on the basis of cost, but rather also on their ability to meet quality guidelines.

In this chapter, we introduce a new approach, Strategic Total Quality Management (STQM). STQM can serve as an extension of TQM.

THE PHILOSOPHY OF STRATEGIC TOTAL QUALITY MANAGEMENT

Our Strategic Total Quality Management philosophy is based on developing a systemic view of quality. This approach views quality as the driving force to ensuring the survivability and competitiveness of a company. However, rather than view quality only from the standpoint of direct products and services, we see quality as a reflection of overall performance. In other words, the performance of a company in its immediate and extended environment in all matters—even those that may not be related directly to the product—is assessed as an attribute of quality. For example, the claim by a major fast-food chain such as McDonald's that its paper bags are "made with recycled paper" is intended to convey the message that the company is socially responsible and environmentally conscious. The McDonald's package further states the most obvious, "Please put litter in its place." Clearly, these messages are a response to growing concerns of consumers about degradation of the environment by manufacturers who do not care about pollution or that are not socially conscious.

Also, banks with holdings in South Africa during the divestment period of the 1980s lost a share of their business from municipal councils, major pension funds, and private individuals who disagreed with apartheid policies. Fur manufacturers have been the target of negative campaigns and have seen a subsequent drop in sales revenue as a result of activities by animal rights groups. Corporations like Exxon, Petroba, and Union Carbide have been involved in serious environmental accidents and have suffered from a bad reputation and a poor public image that oftentimes implies the quality of products and services are secondary.

Thus STQM integrates socially responsible and environmentally sensitive decisions into total quality management in order to improve global competitiveness. It does this by strengthening and enhancing the company's quality objectives. These issues have become so critical that special government agencies have been set up in the United States to deal with them. For example, the Office of Technology Assessment (OTA),