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PREFACE

“After having spent years trying to be accurate, we
must spend as many more in discovering when and
how to be inaccurate”

Ambrose Bierce

In writing a book on mathematical physics, the author is from the beginning
faced with the fact that he has not chosen a uniquely defined subject. The
task would have been easier in the nineteenth century, when physics was
somewhat more stable and mathematics and physics lived in closer
association with each other. Today, the words ‘‘mathematical physics™
have, by fairly general consent, in North America at least, taken on a
special and rather conventional meaning, though there is still some
fuzziness at the boundaries with other areas. As exemplified by the
American Physical Society’s journal of that name, the phrase signifies
the investigation of mathematical techniques current in physics. The
emphasis is on methodology rather than on physical content. In other
places and other times, however, the separation between form and content
is, and has been, less marked.

It is important, first, to understand the difference in purpose of a book
such as this and a book on mathematics per se. Modern mathematics is
primarily concerned with axiomatic systems and formal deductions made
within these systems. In this sense, it consists of games: The axiomatic
system defines the rules of the game, and one then plays according to
these rules. The rules need not have any obvious relation to the world in
which we live.
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viii Preface

The physicist, on the other hand, is concerned with understanding
and describing the physical aspects of the world in which he lives. It is
this which determines and governs his ‘‘mathematics.” For him mathe-
matics is a language, a shorthand, for describing and coordinating his
comprehension of that world. The mathematician is concerned with rigor
and with the completeness and logical consistency of his systems. The
“rules of the game’ must be fully defined and adhered to. The criterion
which the physicist applies to his “‘mathematics™ is its conformity to
nature. Mathematical symbols represent the magnitudes of physical
-quantities, and ““mathematical” formulas express the relations between
these quantities. His systems are, and can be, only as complete as his
comprehension. As for consistency, it is assured by the correspondence
between his mathematical models and physical reality; he is prepared to
assume the internal consistency of nature! Thus, as has been pointed out
by Landau (and many others), mathematical rigor has no relevance to
physics.

This must be the major feature distinguishing a book on mathematics
from one on mathematical physics. The one proceeds axiomatically,
governed by the requirements of rigor. The other tries to construct
workable (and necessarily approximate and incomplete) models of
aspects of physical reality. To attempt to judge either by the standards of
the other is therefore inappropriate and mistaken.

When, in the present book, mathematical structures are described (as
in chapter 2 on Linear Vector Spaces), they should be considered as the
description of a common framework within which theories can be con-
structed of a variety of different sorts of physical phenomenon. The
important questions are, whether the mathematical framework serves as
an effective description of the physics, and whether it provides us with
answers to physical problems which can be tested by physical observa-
tion. No greater mathematical generality is relevant than is required to
describe the phenomena with which we are concerned.

Given this general definition of our aims, a few words should be said
about the particular material which we have chosen to include in this
book. Clearly, any book of this sort could not be “‘complete” without
being encyclopaedic: it must represent an arbitrary selection of topics for
discussion. Our selection has been chosen to link classical and modern
physics through common techniques and concepts. The first chapter is on
vibrating strings, in other words, on problems of one-dimensional wave
propagation. Aside from recognizing the wide importance of wave
phenomena in physics, this subject provides us with a testing ground for a
wide range of concepts and methods with wider relevance, and does so in
a simple and familiar physical context. Thus, when similar problems are
met in newer and less familiar physical contexts, it will not be necessary
to cope with technical difficulties as well as conceptual ones.
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Chapter 2, on linear vector spaces, provides the thread which ties
together most of the rest of the book. This is, of course, the basic con-
ceptual framework of quantum mechanics; it also unifies our treatment of
the problems of classical physics and provides us with some essential
mathematical tools.

In chapter 3 we introduce the problems of potentials and the Laplace
and Poisson differential equations. Since these are three-dimensional
problems, we are led to introduce the method of separation of variables.
An important feature is the introduction of spherical harmonics, which
reappear later in other problems, including that of angular momentum in
quantum mechanics. We have also tried, in this chapter, to illustrate how
physical considerations can be used to provide the motivation for the
development of mathematical techniques.

The fourth chapter is again primarily a “‘mathematical” one. It is
concerned with the methods of Laplace and Fourier transforms and the
relation between them. The methods are illustrated with a selection of
useful examples.

Chapters 5 and 6 deal with important classes of problems in classical
physics. Chapter 5 is concerned with problems of wave propagation in
three dimensions, and chapter 6 with problems primarily of a diffusive
character. Problems of the propagation of electromagnetic waves are
considered at some length. Our intention is not to replace a more extensive
and detailed treatment such as given in Jackson’s book; chapter 5 does (along
with chapter 3) provide a somewhat more streamlined account of some of
the basic problems of the field.

Chapter 7 is concerned with probabilistic methods in physics. Some
basic methods and concepts are introduced, and the basis is provided of a
more fundamental description of some of the diffusive processes dealt
with in chapter 6.

The final three chapters are devoted to a discussion of the funda-
mentals of quantum mechanics. Any treatment of methods of mathemati-
cal physics which was arbitrarily confined to “‘classical” physics would be
artificial, as well as foregoing the pedagogical advantage of exploiting the
technical similarities of many classical and quantum problems. Our
empbhasis is on useful techniques in quantum mechanics. In chapter 8 we
deal with problems of a quite general nature, including a fairly extensive
treatment of the time evolution of quantum systems, and of perturbation
theory. In chapter 9 we deal with the mathematical theory of some stand-
ard problems: the hydrogen atom, the harmonic oscillator in one, two,
and three dimensionals, and angular momentum theory. Extensive use is
made of ladder (or creation and annihilation) operators, which provide
the framework for the introduction of elementary field theoretical
methods in the last chapter. Chapter 10 provides an introduction to many-
body problems using the occupation number representation, and intro-
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duces a number of fundamental problems: the Hartree-Fock method,
the electron gas, and the theory of density matrices and linear response.

As for omissions, perhaps the most striking is that of group theory.
This is partly arbitrary, since any such book must be selective in its
coverage; an additional justification is, however, that it is a difficult
subject in which to give an adequate and self-contained treatment of
modest length, while for longer and more extensive treatments, there have
appeared in recent years a very large number of excellent books on
group-theoretical methods in physics.

It is evident that, given the rapid evolution of physics curricula at the
present time, and the great variety of ways in which the sort of mathe-
matical physics incorporated in this book is distributed among course
units in different universities, it is almost impossible to write a “text book™
which will correspond simultaneously to the patterns of a very large
number of universities. It seems to the author, however, that the very
notion of a course textbook at this level is unrealistic, and that the
advanced undergraduate or beginning graduate student should use a
number of books in any course. My purpose is, therefore, to produce a
generally useful book; one which will be a valuable addition to the
personal library of students of physics. If it fits the needs of particular
courses, so much the better.

A final word about problems. We have departed from the usual
practice of providing collections of problems at the ends of chapters, but
have instead interspersed them throughout the text. Some of these, in
fact, form an integral part of the text, and will serve to test the student’s
grasp of what he has read, and his ability to extend it. Others are exercises
in the techniques dealt with in the text. An effort has been made to avoid
“problems for problems’ sake.” On the other hand, it is impossible to
overemphasize the importance of the student ‘“‘doing” for himself, and not
merely learning theory by memory. I have tried, in many of the problems,
to raise the sort of question which a good student might ask himself. If he
is encouraged to ask further questions, and to seek their answers, their
purpose will have been served.

I should like to express my thanks to Dr. Robert Heck for carefully
checking the manuscript.

P. R. Wallace
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