Carl Hamacher -,Zvonko Vranesic - Safwat Zaky - Naraig Manjikian

COMPUTER ORGANIZATION

AND EMBEDDED SYSTEMS

Sixth Edition

COMPUTLKk usuanNIZATIOL
AND EMBEDDED SYSTEMS

SIXTH EDITION

Carl Hamacher
Queen’s University

Zvonko Vranesic
University of Toronto

- Safwat Zaky
University of Toronto
Naraig Manjikian

Queen’s Univ m 4o 3,,'1
; ¢
[.

A

- B W
”ﬁ ﬁ -g =R
o

“=\ Connect
Learn
Succeed™

~

The McGraw-Hill companies

Connect
Learn
Succeed

COMPUTER ORGANIZATION AND EMBEDDED SYSTEMS, SIXTH EDITION

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the
Americas, New York, NY 10020. Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights
reserved. Previous editions 2002, 1996, and 1990. No part of this publication may be reproduced or
distributed in any form or by any means, or stored in a database or retrieval system, without the prior
written consent of The McGraw-Hill Companies, Inc., including, but not limited to, in any network or
other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside
the United States.

This book is printed on acid-free paper.
123456789DOC/DOC0987654321

ISBN 978-0-07-338065-0
MHID 0-07-338065-2

Vice President & Editor-in-Chief: Marty Lange

Vice President EDP/Central Publishing Services: Kimberly Meriwether David
Publisher: Raghothaman Srinivasan

Senior Sponsoring Editor: Peter E. Massar

Developmental Editor: Darlene M. Schueller

Senior Marketing Manager: Curt Reynolds

Senior Project Manager: Lisa A. Bruflodt

Buyer: Laura Fuller

Design Coordinator: Brenda A. Rolwes

Media Project Manager: Balaji Sundararaman

Cover Design: Studio Montage, St. Louis, Missouri

Cover Image: © Royalty-Free/CORBIS

Compositor: Techsetters, Inc.

Typeface: 10/12 Times Roman

Printer: R. R. Donnelley & Sons Company/Crawfordsville, IN

Library of Congress Cataloging-in-Publication Data

Computer organization and embedded systems / Carl Hamacher ... [et al.]. — 6th ed.
p. cm.
Includes bibliographical references.
ISBN-13: 978-0-07-338065-0 (alk. paper)
ISBN-10: 0-07-338065-2 (alk. paper)
1. Computer organization. 2. Embedded computer systems. 1. Hamacher, V. Carl.
QA76.9.C643.H36 2012
004.2'2—dc22
2010050243

www.mhhe.com

CONTENTS

Chapter 1

BASIC STRUCTURE OF
COMPUTERS 1

1.1
1.2

1.3
1.4

1.5
1.6

1.8
1.9

Computer Types 2
Functional Units 3

1,21 Input Unit 4

1.2.2 Memory Unit 4

1.2.3 Arithmetic and Logic Unit 5
1.2.4 Output Unit 6

1.2.5 Control Unit 6

Basic Operational Concepts 7
Number Representation and Arithmetic
Operations 9

1.4.1 Integers 10

1.4.2 Floating-Point Numbers 16
Character Representation 17
Performance 17

1.6.1 Technology 17

1.6.2 Parallelism 19

Historical Perspective 19

1.7.1 The First Generation 20
1.7.2 The Second Generation 20
1.7.3 The Third Generation 21
1.7.4 The Fourth Generation 21

Concluding Remarks 22
Solved Problems 22
Problems 24
References 25

Chapter 2

INSTRUCTION SET
ARCHITECTURE 27

2.1

2.2

Memory Locations and Addresses 28

2.1.1 Byte Addressability 30

2.1.2 Big-Endian and Little-Endian
Assignments 30

213 Word Alignment 31

2.14 Accessing Numbers and Characters 32

Memory Operations 32

23

2.4

2.5

2.6
2.7

2.8

29
2.10

2.11
2.12

2.13
2.14
215

Instructions and Instruction Sequencing 32

2.3.1 Register Transfer Notation 33
232 Assembly-Language Notation 33
233 RISC and CISC Instruction Sets 34
234 Introduction to RISC Instruction
Sets 34
235 Instruction Execution and Straight-Line
Sequencing 36
2.3.6 Branching 37
2.3.7 Generating Memory Addresses 40

Addressing Modes 40

24.1 Implementation of Variables and
Constants 41

242 Indirection and Pointers 42

243 Indexing and Arrays 45

Assembly Language 48

2.5.1 Assembler Directives 50

252 Assembly and Execution of
Programs 53

2,53 Number Notation 54

Stacks 55

Subroutines 56

2.1 Subroutine Nesting and the Processor
Stack 58

2.7.2 Parameter Passing 59

2.7.3 The Stack Frame 63

Additional Instructions 65

2.8.1 Logic Instructions 67
2.8.2 Shift and Rotate Instructions 68
2.83 Multiplication and Division 71

Dealing with 32-Bit Immediate Values 73
CISC Instruction Sets 74

2.10.1 Additional Addressing Modes 75
2.10.2 Condition Codes 77

RISC and CISC Styles 78

Example Programs 79

2.12.1 Vector Dot Product Program 79
2.12.2 String Search Program 81
Encoding of Machine Instructions 82
Concluding Remarks 85

Solved Problems 85

Problems 90

xvi CONTENTS

Chapter 3
Basic INpuT/OUuTPUT 95

3.1 Accessing I/O Devices 96
3.1.1 I/0 Device Interface 97
3.1.2 Program-Controlled /O 97
313 An Example of a RISC-Style I/O

Program 101
3.14 An Example of a CISC-Style I/O
Program 101
3.2 Interrupts 103
3.2.1 Enabling and Disabling Interrupts 106

322 Handling Multiple Devices 107
323 Controlling I/O Device Behavior 109
324 Processor Control Registers 110
3.2.5 Examples of Interrupt Programs 111
3.2.6 Exceptions 116

3.3 Concluding Remarks 119

34 Solved Problems 119
Problems 126

Chapter 4
SOFTWARE 129

4.1 The Assembly Process 130
4.1.1 Two-pass Assembler 131
4.2 Loading and Executing Object Programs 131
43 The Linker 132
4.4 Libraries 133
4.5 The Compiler 133
4.5.1 Compiler Optimizations 134
45.2 Combining Programs Written in
Different Languages 134
4.6 The Debugger 134
4.7 Using a High-level Language for I/O
Tasks 137
4.8 Interaction between Assembly Language and
C Language 139
4.9 The Operating System 143

4.9.1 The Boot-strapping Process 144
492 Managing the Execution of Application
Programs 144

493 Use of Interrupts in Operating
Systems 146
4.10 Concluding Remarks 149
Problems 149
References 150

Chapter 5
BaAsic ProcEssING UnNiT 151

5.1 Some Fuhdamental Concepts 152
5.2 Instruction Execution 155

5.2.1 -+ Load Instructions 155

522 Arithmetic and Logic Instructions

- 1823 Store Instructions 157

5.3 Hardware Components 158

5.3.1 Register File 158

5:3.2 ALU 160

533 Datapath 161

534 Instruction Fetch Section 164

5.4 Instruction Fetch and Execution Steps 165

54.1 Branching 168
5.4.2 Waiting for Memory 171
5.5 Control Signals 172
5.6 Hardwired Control 175
5.6.1 Datapath Control Signals 177
5.6.2 ' Dealing with Memory Delay 177
5.7 CISC-Style Processors 178
571 An Interconnect using Buses 180
5.7.2 Microprogrammed Control 183
5.8 Concluding Remarks 185
5.9 Solved Problems 185
Problems 188

Chapter 6
PiPECINING 193

6.1 Basic Concept—The Ideal Case 194

6.2 Pipeline Organization 195

6.3 Pipelining Issues 196

6.4 Data Dependencies 197
6.4.1 Operand Forwarding 198
6.4.2 Handling Data Dependencies in

Software 199

6.5 Memory Delays 201

6.6 Branch Delays 202
6.6.1 Unconditional Branches 202
6.6.2 Conditional Branches 204
6.6.3 The Branch Delay Slot 204
6.6.4 Branch Prediction 205

6.7 Resource Limitations 209

6.8 Performance Evaluation 209
6.8.1 Effects of Stalls and Penalties 210
6.8.2 Number of Pipeline Stages 212

6.9 Superscalar Operation 212
6.9.1 Branches and Data Dependencies
6.9.2 Out-of-Order Execution 215
6.9.3 Execution Completion 216
6.9.4 Dispatch Operation 217

6.10 Pipelining in CISC Processors 218
6.10.1 Pipelining in ColdFire Processors
6.10.2 Pipelining in Intel Processors 219

6.11 Concluding Remarks 220

6.12 Examples of Solved Problems 220
Problems 222
References 226

Chapter 7

INPUT/OUTPUT ORGANIZATION 227

7.1 Bus Structure 228
7.2 Bus Operation 229
7:2:1 Synchronous Bus 230
722 Asynchronous Bus 233
723 Electrical Considerations 236
7.3 Arbitration 237
7.4 Interface Circuits 238
7.4.1 Parallel Interface 239
742 Serial Interface 243
7.5 Interconnection Standards 247
7.5.1 Universal Serial Bus (USB) 247
752 FireWire 251
753 PCI Bus 252
754 SCSI Bus 256
75.5 SATA 258
7.5.6 SAS 258
7.5.7 PCI Express 258
7.6 Concluding Remarks 260
7.7 Solved Problems 260
Problems 263
References 266

Chapter 8
THE MEMORY SYSTEM 267

8.1 Basic Concepts 268
8.2 Semiconductor RAM Memories 270
8.2.1 Internal Organization of Memory
Chips 270
8.2.2 Static Memories 271
8.2.3 Dynamic RAMs 274

8.4
8.5
8.6

8.7

8.8

8.9
8.10

8.11
8.12

CONTENTS xvii

8.24 Synchronous DRAMs 276

8.2.5 Structure of Larger Memories 279
Read-only Memories 282

8.3.1 ROM 283

8.3.2 PROM 283

8.3.3 EPROM 284

834 EEPROM 284

8.3.5 Flash Memory 284

Direct Memory Access 285

Memory Hierarchy 288

Cache Memories 289

8.6.1 Mapping Functions 291

8.6.2 Replacement Algorithms 296
8.6.3 Examples of Mapping Techniques 297
Performance Considerations 300

8.7.1 Hit Rate and Miss Penalty 301
8.7.2 Caches on the Processor Chip 302
8.7.3 Other Enhancements 303

Virtual Memory 305

8.8.1 Address Translation 306
Memory Management Requirements 310
Secondary Storage 311

8.10.1 Magnetic Hard Disks 311

8.10.2 Optical Disks 317

8.10.3 Magnetic Tape Systems 322
Concluding Remarks 323

Solved Problems 324

Problems 328

References 332

Chapter 9
ARITHMETIC 335

9.1

9.2

93

9.4

9.5

Addition and Subtraction of Signed
Numbers 336

9.1.1 Addition/Subtraction Logic Unit 336
Design of Fast Adders 339

9.2.1 Carry-Lookahead Addition 340
Multiplication of Unsigned Numbers 344
9.3.1 Array Multiplier 344

9.3:2 Sequential Circuit Multiplier 346
Multiplication of Signed Numbers 346
9.4.1 The Booth Algorithm 348

Fast Multiplication 351

9.5.1 Bit-Pair Recoding of Multipliers 352
9.5.2 Carry-Save Addition of Summands 353

xviii

9.6
9.9

9.8
9.9
9.10

CONTENTS

9.5:3 Summand Addition Tree using 3-2
Reducers 355

9.5.4 Summand Addition Tree using 4-2
Reducers 357

9i5.5 Summary of Fast Multiplication 359

Integer Division 360

Floating-Point Numbers and Operations 363

9.7.1 Arithmetic Operations on
Floating-Point Numbers 367

9.7.2 Guard Bits and Truncation 368

9:7.3 Implementing Floating-Point
Operations 369

Decimal-to-Binary Conversion 372

Concluding Remarks 372

Solved Problems 374

Problems 377

References 383

Chapter 10
EMBEDDED SYSTEMS 385

10.1

10.2

10.3

10.4
10.5

10.6

10.7
10.8

Examples of Embedded Systems 386

10.1.1 Microwave Oven 386
10.1.2 Digital Camera 387
10.1.3 Home Telemetry 390

Microcontroller Chips for Embedded
Applications 390

A Simple Microcontroller 392

10.3.1 Parallel I/O Interface 392

10.3.2 Serial I/O Interface 395

10.3.3 Counter/Timer 397

10.3.4 Interrupt-Control Mechanism 399
10.3.5 Programming Examples 399

Reaction Timer—A Complete Example 401
Sensors and Actuators 407

10.5.1 Sensors 407 \
10.5.2 Actuators 410

10.5.3 Application Examples 411
Microcontroller Families 412

10.6.1 Microcontrollers Based on the Intel
8051 413

10.6.2 Freescale Microcontrollers 413

10.6.3 ARM Microcontrollers 414

Design Issues 414
Concluding Remarks
Problems 418
References 420

417

Chapter

SYSTEM-ON-A-CHIP— A CASE
Stupy 421

11.1 FPGA Implementation 422

11.1.1 FPGA Devices 423
11.1.2 Processor Choice 423

11.2 Computer-Aided Design Tools 424
11.2.1 Altera CAD Tools 425

-11.3 Alarm Clock Example 428
11.3.1 User’s View of the System 428
11.3.2 System Definition and Generation 429
11.3.3 ° Circuit Implementation 430
11.3.4 Application Software 431

11.4 Concluding Remarks 440
Problems 440
References 441

Chapter 12

PARALLEL PROCESSING AND
PERFORMANCE 443

12.1
12.2

12.3

12.4

12.5
12.6

12:2
12.8

Hardware Multithreading 444
Vector (SIMD) Processing 445

12.2.1 Graphics Processing Units (GPUs) 448
Shared-Memory Multiprocessors 448

12.3.1 Interconnection Networks 450

Cache Coherence 453

12.4.1 Write-Through Protocol 453

1242 Write-Back protocol 454

1243 Snoopy Caches 454

12.4.4 Directory-Based Cache Coherence 456

Message-Passing Multicomputers

456

Parallel Programming for

Multiprocessors 456
Performance Modeling 460
Concluding Remarks 461
Problems 462

References 463

Appendix A
Logic CIrculTs 465

A.l

A.2 Synthesis of Logic Functions

Basic Logic Functions

Al

469
470

Electronic Logic Gates

A3

A4
AS

A.6

AT
A8
A9
A.10
A.ll

A.12
A.13

A.14

Minimization of Logic Expressions 472

A3.1 Minimization using Karnaugh Maps 475
A32 Don’t-Care Conditions 477

Synthesis with NAND and NOR Gates 479
Practical Implementation of Logic Gates 482
A5 CMOS Circuits 484

AS5.2 Propagation Delay 489

AS53 Fan-In and Fan-Out Constraints 490
A.5.4 Tri-State Buffers 491

Flip-Flops 492

A6.1 Gated Latches 493

A6.2 Master-Slave Flip-Flop 495

A6.3 Edge Triggering 498

A.64 TFlip-Flop 498

A.6.5 JK Flip-Flop 499

A.6.6 Flip-Flops with Preset and Clear 501
Registers and Shift Registers 502

Counters 503

Decoders 505

Multiplexers 506

Programmable Logic Devices (PLDs) 509

A.lll
A11.2
A.11.3

Programmable Logic Array (PLA) 509
Programmable Array Logic (PAL) 511
Complex Programmable Logic Devices
(CPLDs) 512
Field-Programmable Gate Arrays
Sequential Circuits 516

514

A.13.1 Design of an Up/Down Counter as a
Sequential Circuit 516

A.13.2 Timing Diagrams 519

A.13.3 The Finite State Machine Model 520

A.13.4 Synthesis of Finite State Machines 521

Concluding Remarks 522

Problems 522

References 528

Appendix B

THE ALTERA Ni1os 11
PROCESSOR 529

B.1
B.2
B.3
B.4

Nios II Characteristics 530
General-Purpose Registers
Addressing Modes 532
Instructions 533

B.4.1 Notation 533

B.4.2 Load and Store Instructions
B.4.3 Arithmetic Instructions 536

531

534

B.5
B.6
B.7
B.8
B.9
B.10

B.12
B.13

CONTENTS Xix

B.4.4
B.4.5
B.4.6
B.4.7
B.4.8
B.4.9

Logic Instructions 537

Move Instructions 537
Branch and Jump Instructions
Subroutine Linkage Instructions
Comparison Instructions 545
Shift Instructions 546

B.4.10 Rotate Instructions 547
B.4.11 Control Instructions 548
Pseudoinstructions 548
Assembler Directives 549

Carry and Overflow Detection 551
Example Programs 553

Control Registers 553

Input/Output 555

B.10.1 Program-Controlled /O 556
B.10.2 Interrupts and Exceptions 556
Advanced Configurations of Nios II
Processor 562

B.11.1 External Interrupt Controller 562
B.11.2 Memory Management Unit 562
B.11.3 Floating-Point Hardware 562
Concluding Remarks 563

Solved Problems 563

Problems 568

538
541

Appendix C
THE COLDFIRE PROCESSOR 571

C.1
G2
C3

C4
C5

C.6

C.7
(OR

Memory Organization 572
Registers 572

Instructions 573

C3.1 Addressing Modes 575

C.32 Move Instruction 577

C33 Arithmetic Instructions 578
C34 Branch and Jump Instructions
c35 Logic Instructions 585

C.3.6 Shift Instructions 586

€.3.7 Subroutine Linkage Instructions
Assembler Directives 593
Example Programs 594

C.5.1 Vector Dot Product Program 594
C5.2 String Search Program 595
Mode of Operation and Other Control
Features 596
Input/Output 597
Floating-Point Operations
C.8.1

582

587

599
FMOVE Instruction 599

CJ9

CONTENTS

C.8.2 Floating-Point Arithmetic
Instructions 600
C.8.3 Comparison and Branch
Instructions 601
C.8.4 Additional Floating-Point
Instructions 601
C.8.5 Example Floating-Point Program 602
Concluding Remarks 603

C.10 Solved Problems 603

Problems 608
References 609

Appendix D
THE ARM PROCESSOR 611

D.1

D.2
D.3

D.4

D.5

D.6

D.7

D.8

ARM Characteristics 612

D.1.1 Unusual Aspects of the ARM
Architecture 612)

Register Structure 613

Addressing Modes 614

D.3.1 Basic Indexed Addressing Mode 614

D.3.2 Relative Addressing Mode 615

D33 Index Modes with Writeback 616

D.3.4 Offset Determination 616

D.3.5 Register, Immediate, and Absolute
Addressing Modes 618

D.3.6 Addressing Mode Examples 618

Instructions 621

D.4.1 Load and Store Instructions 621

D.4.2 Arithmetic Instructions 622

D43 Move Instructions 625

D.4.4 Logic and Test Instructions 626

D.4.5 Compare Instructions 627

D.4.6 Setting Condition Code Flags 628

D.4.7 Branch Instructions 628

D.4.8 Subroutine Linkage Instructions 631

Assembly Language 635

D.5.1 Pseudoinstructions 637
Example Programs 638
D.6.1 Vector Dot Product 639

D.6.2 String Search 639

Operating Modes and Exceptions 639
D.7.1 Banked Registers 641

D.7.2 Exception Types 642

D.7.3 System Mode 644

D.74 Handling Exceptions 644
Input/Output 646

D.8.1 Program-Controlled /O 646
D.8.2 Interrupt-Driven /O 648

D.9 Conditional Execution of Instructions 648
D.10 Coprocessors 650
D.11 Embedded Applications and the Thumb
ISA 651
D.12 Concluding Remarks 651
D.13 Solved Problems 652
Problems 657
References 660

Appendix E
THE INTEL IA-32 ARCHITECTURE
661

E.1 Memory Organization 662

E.2 Register Structure 662

E.3 Addressing Modes 665

E.4 Instructions 668
E4.1 Machine Instruction Format 670
E4.2 Assembly-Language Notation 670
E4.3 Move Instruction 671
E4.4 Load-Effective-Address Instruction 671
E45 Arithmetic Instructions 672
E.4.6 Jump and Loop Instructions 674
E.4.7 Logic Instructions 677
EA4.8 Shift and Rotate Instructions 678
E4.9 Subroutine Linkage Instructions 679
E.4.10 Operations on Large Numbers 681

E.5 Assembler Directives 685

E.6 Example Programs 686
E.6.1 Vector Dot Product Program 686
E.6.2 String Search Program 686

E.7 Interrupts and Exceptions 687

E.8 Input/Output Examples 689

E.9 Scalar Floating-Point Operations 690

E.9.1 Load and Store Instructions 692
E.9.2 Arithmetic Instructions 693
E.9.3 Comparison Instructions 694

E94 Additional Instructions 694

E9.5 Example Floating-Point Program 694
E.10 Multimedia Extension (MMX)

. Operations 695

E.11 Vector (SIMD) Floating-Point

Operations 696
E.12 Examples of Solved Problems 697
E.13 Concluding Remarks 702

Problems 702

References 703

chapter

BASIC STRUCTURE OF COMPUTERS

CHAPTER OBJECTIVES

In this chapter you will be introduced to:

e The different types of computers

e The basic structure of a computer and its
operation

e Machine instructions and their execution
e Number and character representations
e Addition and subtraction of binary numbers

e Basic performance issues in computer
systems

e Abrief history of computer development

2 CHAPTER 1 . Basic STRUCTURE OF COMPUTERS

This book is about computer organization. It explains the function and design of the various units of digital
computers that store and process information. It also deals with the input units of the computer which receive
information from external sources and the output units which send computed results to external destinations.
The input, storage, processing, and output operations are governed by a list of instructions that constitute a
program.

Most of the material in the book is devoted to computer hardware and computer architecture. Computer
hardware consists of electronic circuits, magnetic and optical storage devices, displays, electromechanical
devices, and communication facilities. Computer architecture encompasses the specification of an instruction
set and the functional behavior of the hardware units that implement the instructions.

Many aspects of programming and software components in computer systems are also discussed in the
book. It is important to consider both hardware and software aspects of the design of the various computer
components in order to gain a good understanding of computer systems.

l 1.1 CompuUTER TYPES

Since their introduction in the 1940s, digital computers have evolved into many different
types that vary widely in size, cost, computational power, and intended use. Modern
computers can be divided roughly into four general categories:

* Embedded computers are integrated into a larger device or system in order to automat-
ically monitor and control a physical process or environment. They are used for a specific
purpose rather than for general processing tasks. Typical applications include industrial
and home automation, appliances, telecommunication products, and vehicles. Users may
not even be aware of the role that computers play in such systems.

®* Personal computers have achieved widespread use in homes, educational institu-
tions, and business and engineering office settings, primarily for dedicated individual use.
They support a variety of applications such as general computation, document preparation,
computer-aided design, audiovisual entertainment, interpersonal communication, and In-
ternet browsing. A number of classifications are used for personal computers. Desktop
computers serve general needs and fit within a typical personal workspace. Workstation
computers offer higher computational capacity and more powerful graphical display ca-
pabilities for engineering and scientific work. Finally, Portable and Notebook computers
provide the basic features of a personal computer in a smaller lightweight package. They
can operate on batteries to provide mobility.

® Servers and Enterprise systems are large computers that are meant to be shared by a
potentially large number of users who access them from some form of personal computer
over a public or private network. Such computers may host large databases and provide
information processing for a government agency or a commercial organization.

* Supercomputers and Grid computers normally offer the highest performance. They are
the most expensive and physically the largest category of computers. Supercomputers are
used for the highly demanding computations needed in weather forecasting, engineering
design and simulation, and scientific work. They have a high cost. Grid computers provide
a more cost-effective alternative. They combine a large number of personal computers and

1.2 FuncTioNAL UNITS

disk storage units in a physically distributed high-speed network, called a grid, which is
managed as a coordinated computing resource. By evenly distributing the computational
workload across the grid, it is possible to achieve high performance on large applications
ranging from numerical computation to information searching.

There is an emerging trend in access to computing facilities, known as cloud com-
puting. Personal computer users access widely distributed computing and storage server
resources for individual, independent, computing needs. The Internet provides the neces-
sary communication facility. Cloud hardware and software service providers operate as a
utility, charging on a pay-as-you-use basis.

1.2 FuncTioNAL UNITS

A computer consists of five functionally independent main parts: input, memory, arithmetic
and logic, output, and control units, as shown in Figure 1.1. The input unit accepts coded
information from human operators using devices such as keyboards, or from other comput-
ers over digital communication lines. The information received is stored in the computer’s
memory, either for later use or to be processed immediately by the arithmetic and logic unit.
The processing steps are specified by a program that is also stored in the memory. Finally,
the results are sent back to the outside world through the output unit. All of these actions
are coordinated by the control unit. An interconnection network provides the means for
the functional units to exchange information and coordinate their actions. Later chapters
will provide more details on individual units and their interconnections. We refer to the

Memory
Arithmetic
Input and
logic
Interconnection
network
Output Control
1/0 Processor

Figure 1.1 Basic functional units of a computer.

CHAPTER 1 e BaAsiCc STRUCTURE OF COMPUTERS

arithmetic and logic circuits, in conjunction with the main control circuits, as the processor.
Input and output equipment is often collectively referred to as the input-output (1/0) unit.

We now take a closer look at the information handled by a computer. It is conve-
nient to categorize this information as either instructions or data. Instructions, or machine
instructions, are explicit commands that

e Govern the transfer of information within a computer as well as between the computer
and its I/O devices

e Specify the arithmetic and logic operations to be performed

A program is alist of instructions which performs a task. Programs are stored in the memory.
The processor fetches the program instructions from the memory, one after another, and
performs the desired operations. The computer is controlled by the stored program, except
for possible external interruption by an operator or by I/O devices connected to it. Data are
numbers and characters that are used as operands by the instructions. Data are also stored
in the memory.

The instructions and data handled by a computer must be encoded in a suitable format.
Most present-day hardware employs digital circuits that have only two stable states. Each
instruction, number, or character is encoded as a string of binary digits called bits, each
having one of two possible values, O or 1, represented by the two stable states. Numbers are
usually represented in positional binary notation, as discussed in Section 1.4. Alphanumeric
characters are also expressed in terms of binary codes, as discussed in Section 1.5.

1.2.1 Ineut UNIT

Computers accept coded information through input units. The most common input device is
the keyboard. Whenever a key is pressed, the corresponding letter or digit is automatically
translated into its corresponding binary code and transmitted to the processor.

Many other kinds of input devices for human-computer interaction are available, in-
cluding the touchpad, mouse, joystick, and trackball. These are often used as graphic
input devices in conjunction with displays. Microphones can be used to capture audio
input which is then sampled and converted into digital codes for storage and processing.
Similarly, cameras can be used to capture video input.

Digital communication facilities, such as the Internet, can also provide input to a
computer from other computers and database servers.

1.2.2 MEgemMORY UNIT

The function of the memory unit is to store programs and data. There are two classes of
storage, called primary and secondary.
Primary Memory

Primary memory, also called main memory, is a fast memory that operates at electronic
speeds. Programs must be stored in this memory while they are being executed. The

1.2 FuncTioNAL UNITS

memory consists of a large number of semiconductor storage cells, each capable of storing
one bit of information. These cells are rarely read or written individually. Instead, they are
handled in groups of fixed size called words. The memory is organized so that one word can
be stored or retrieved in one basic operation. The number of bits in each word is referred
to as the word length of the computer, typically 16, 32, or 64 bits.

To provide easy access to any word in the memory, a distinct address is associated
with each word location. Addresses are consecutive numbers, starting from 0, that identify
successive locations. A particular word is accessed by specifying its address and issuing a
control command to the memory that starts the storage or retrieval process.

Instructions and data can be written into or read from the memory under the control of
the processor. It is essential to be able to access any word location in the memory as quickly
as possible. A memory in which any location can be accessed in a short and fixed amount
of time after specifying its address is called a random-access memory (RAM). The time
required to access one word is called the memory access time. This time is independent of
the location of the word being accessed. It typically ranges from a few nanoseconds (ns)
to about 100 ns for current RAM units.

Cache Memory

As an adjunct to the main memory, a smaller, faster RAM unit, called a cache, is used
to hold sections of a program that are currently being executed, along with any associated
data. The cache is tightly coupled with the processor and is usually contained on the same
integrated-circuit chip. The purpose of the cache is to facilitate high instruction execution
rates.

At the start of program execution, the cache is empty. All program instructions and
any required data are stored in the main memory. As execution proceeds, instructions
are fetched into the processor chip, and a copy of each is placed in the cache. When the
execution of an instruction requires data located in the main memory, the data are fetched
and copies are also placed in the cache.

Now, suppose a number of instructions are executed repeatedly as happens in a program
loop. If these instructions are available in the cache, they can be fetched quickly during the
period of repeated use. Similarly, if the same data locations are accessed repeatedly while
copies of their contents are available in the cache, they can be fetched quickly.

Secondary Storage

Although primary memory is essential, it tends to be expensive and does not retain in-
formation when power is turned off. Thus additional, less expensive, permanent secondary
storage is used when large amounts of data and many programs have to be stored, particu-
larly for information that is accessed infrequently. Access times for secondary storage are
longer than for primary memory. A wide selection of secondary storage devices is available,
including magnetic disks, optical disks (DVD and CD), and flash memory devices.

1.2.3 ARITHMETIC AND LogGic UNiT

Most computer operations are executed in the arithmetic and logic unit (ALU) of the
processor. Any arithmetic or logic operation, such as addition, subtraction, multiplication,

CHAPTER 1 . BASIC STRUCTURE OF COMPUTERS

division, or comparison of numbers, is initiated by bringing the required operands into the
processor, where the operation is performed by the ALU. For example, if two numbers
located in the memory are to be added, they are brought into the processor, and the addition
is carried out by the ALU. The sum may then be stored in the memory or retained in the
processor for immediate use.

When operands are brought into the processor, they are stored in high-speed storage
elements called registers. Each register can store one word of data. Access times to registers
are even shorter than access times to the cache unit on the processor chip.

1.2.4 Ovutrput UNIT

The output unit is the counterpart of the input unit. Its function is to send processed results
to the outside world. A familiar example of such a device is a printer. Most printers employ
either photocopying techniques, as in laser printers, or ink jet streams. Such printers may
generate output at speeds of 20 or more pages per minute. However, printers are mechanical
devices, and as such are quite slow compared to the electronic speed of a processor.

Some units, such as graphic displays, provide both an output function, showing text
and graphics, and an input function, through touchscreen capability. The dual role of such
units is the reason for using the single name input/output (1/0) unit in many cases.

1.2.5 ConTrOL UNIT

The memory, arithmetic and logic, and I/0 units store and process information and perform
input and output operations. The operation of these units must be coordinated in some way.
This is the responsibility of the control unit. The control unit is effectively the nerve center
that sends control signals to other units and senses their states.

I/O transfers, consisting of input and output operations, are controlled by program
instructions that identify the devices involved and the information to be transferred. Control
circuits are responsible for generating the timing signals that govern the transfers and
determine when a given action is to take place. Data transfers between the processor and
the memory are also managed by the control unit through timing signals. It is reasonable
to think of a control unit as a well-defined, physically separate unit that interacts with other
parts of the computer. In practice, however, this is seldom the case. Much of the control
circuitry is physically distributed throughout the computer. A large set of control lines
(wires) carries the signals used for timing and synchronization of events in all units.

The operation of a computer can be summarized as follows:

* The computer accepts information in the form of programs and data through an input
unit and stores it in the memory.

¢ Information stored in the memory is fetched under program control into an arithmetic
and logic unit, where it is processed.

e Processed information leaves the computer through an output unit.

e All activities in the computer are directed by the control unit.

1.3 BaAsiCc OPERATIONAL CONCEPTS

1.3 Basic OPERATIONAL CONCEPTS

In Section 1.2, we stated that the activity in a computer is governed by instructions. To
perform a given task, an appropriate program consisting of a list of instructions is stored
in the memory. Individual instructions are brought from the memory into the processor,
which executes the specified operations. Data to be used as instruction operands are also
stored in the memory.

A typical instruction might be

Load R2,LOC

This instruction reads the contents of a memory location whose address is represented
symbolically by the label LOC and loads them into processor register R2. The original
contents of location LOC are preserved, whereas those of register R2 are overwritten.
Execution of this instruction requires several steps. First, the instruction is fetched from
the memory into the processor. Next, the operation to be performed is determined by the
control unit. The operand at LOC is then fetched from the memory into the processor.
Finally, the operand is stored in register R2.

After operands have been loaded from memory into processor registers, arithmetic or
logic operations can be performed on them. For example, the instruction

Add R4,R2,R3

adds the contents of registers R2 and R3, then places their sum into register R4. The
operands in R2 and R3 are not altered, but the previous value in R4 is overwritten by the
sum.

After completing the desired operations, the results are in processor registers. They
can be transferred to the memory using instructions such as

Store R4, LOC

This instruction copies the operand in register R4 to memory location LOC. The original
contents of location LOC are overwritten, but those of R4 are preserved.

For Load and Store instructions, transfers between the memory and the processor are
initiated by sending the address of the desired memory location to the memory unit and
asserting the appropriate control signals. The data are then transferred to or from the
memory.

Figure 1.2 shows how the memory and the processor can be connected. It also shows
some components of the processor that have not been discussed yet. The interconnections
between these components are not shown explicitly since we will only discuss their func-
tional characteristics here. Chapter 5 describes the details of the interconnections as part
of processor organization. :

In addition to the ALU and the control circuitry, the processor contains a number
of registers used for several different purposes. The instruction register (IR) holds the
instruction that is currently being executed. Its output is available to the control circuits,
which generate the timing signals that control the various processing elements involved
in executing the instruction. The program counter (PC) is another specialized register. It

CHAPTER 1 . BASIC STRUCTURE OF COMPUTERS

Main memory

\/

Processor-memory interface

PC R,
Control
R |
=<—— Processor
IR
ALU
Rn— 1

n general purpose
registers

Figure 1.2 Connection between the processor and the main memory.

contains the memory address of the next instruction to be fetched and executed. During the
execution of an instruction, the contents of the PC are updated to correspond to the address
of the next instruction to be executed. It is customary to say that the PC points to the next
instruction that is to be fetched from the memory. In addition to the IR and PC, Figure 1.2
shows general-purpose registers R through R,_, often called processor registers. They
serve a variety of functions, including holding operands that have been loaded from the
memory for processing. The roles of the general-purpose registers are explained in detail
in Chapter 2.

The processor-memory interface is a circuit which manages the transfer of data between
the main memory and the processor. If a word is to be read from the memory, the interface
sends the address of that word to the memory along with a Read control signal. The interface
waits for the word to be retrieved, then transfers it to the appropriate processor register. If
a word is to be written into memory, the interface transfers both the address and the word
to the memory along with a Write control signal.

Let us now consider some typical operating steps. A program must be in the main
memory in order for it to be executed. It is often transferred there from secondary storage
through the input unit. Execution of the program begins when the PC is set to point to the

