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chapter

BASIC STRUCTURE OF COMPUTERS

CHAPTER OBJECTIVES

In this chapter you will be introduced to:

e The different types of computers

e The basic structure of a computer and its
operation

e  Machine instructions and their execution
e Number and character representations
e Addition and subtraction of binary numbers

e Basic performance issues in computer
systems

e  Abrief history of computer development




2 CHAPTER 1 . Basic STRUCTURE OF COMPUTERS

This book is about computer organization. It explains the function and design of the various units of digital
computers that store and process information. It also deals with the input units of the computer which receive
information from external sources and the output units which send computed results to external destinations.
The input, storage, processing, and output operations are governed by a list of instructions that constitute a
program.

Most of the material in the book is devoted to computer hardware and computer architecture. Computer
hardware consists of electronic circuits, magnetic and optical storage devices, displays, electromechanical
devices, and communication facilities. Computer architecture encompasses the specification of an instruction
set and the functional behavior of the hardware units that implement the instructions.

Many aspects of programming and software components in computer systems are also discussed in the
book. It is important to consider both hardware and software aspects of the design of the various computer
components in order to gain a good understanding of computer systems.

l 1.1 CompuUTER TYPES

Since their introduction in the 1940s, digital computers have evolved into many different
types that vary widely in size, cost, computational power, and intended use. Modern
computers can be divided roughly into four general categories:

*  Embedded computers are integrated into a larger device or system in order to automat-
ically monitor and control a physical process or environment. They are used for a specific
purpose rather than for general processing tasks. Typical applications include industrial
and home automation, appliances, telecommunication products, and vehicles. Users may
not even be aware of the role that computers play in such systems.

®*  Personal computers have achieved widespread use in homes, educational institu-
tions, and business and engineering office settings, primarily for dedicated individual use.
They support a variety of applications such as general computation, document preparation,
computer-aided design, audiovisual entertainment, interpersonal communication, and In-
ternet browsing. A number of classifications are used for personal computers. Desktop
computers serve general needs and fit within a typical personal workspace. Workstation
computers offer higher computational capacity and more powerful graphical display ca-
pabilities for engineering and scientific work. Finally, Portable and Notebook computers
provide the basic features of a personal computer in a smaller lightweight package. They
can operate on batteries to provide mobility.

®  Servers and Enterprise systems are large computers that are meant to be shared by a
potentially large number of users who access them from some form of personal computer
over a public or private network. Such computers may host large databases and provide
information processing for a government agency or a commercial organization.

*  Supercomputers and Grid computers normally offer the highest performance. They are
the most expensive and physically the largest category of computers. Supercomputers are
used for the highly demanding computations needed in weather forecasting, engineering
design and simulation, and scientific work. They have a high cost. Grid computers provide
a more cost-effective alternative. They combine a large number of personal computers and



1.2 FuncTioNAL UNITS

disk storage units in a physically distributed high-speed network, called a grid, which is
managed as a coordinated computing resource. By evenly distributing the computational
workload across the grid, it is possible to achieve high performance on large applications
ranging from numerical computation to information searching.

There is an emerging trend in access to computing facilities, known as cloud com-
puting. Personal computer users access widely distributed computing and storage server
resources for individual, independent, computing needs. The Internet provides the neces-
sary communication facility. Cloud hardware and software service providers operate as a
utility, charging on a pay-as-you-use basis.

1.2 FuncTioNAL UNITS

A computer consists of five functionally independent main parts: input, memory, arithmetic
and logic, output, and control units, as shown in Figure 1.1. The input unit accepts coded
information from human operators using devices such as keyboards, or from other comput-
ers over digital communication lines. The information received is stored in the computer’s
memory, either for later use or to be processed immediately by the arithmetic and logic unit.
The processing steps are specified by a program that is also stored in the memory. Finally,
the results are sent back to the outside world through the output unit. All of these actions
are coordinated by the control unit. An interconnection network provides the means for
the functional units to exchange information and coordinate their actions. Later chapters
will provide more details on individual units and their interconnections. We refer to the

Memory
Arithmetic
Input and
logic
Interconnection
network
Output Control
1/0 Processor

Figure 1.1 Basic functional units of a computer.
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arithmetic and logic circuits, in conjunction with the main control circuits, as the processor.
Input and output equipment is often collectively referred to as the input-output (1/0) unit.

We now take a closer look at the information handled by a computer. It is conve-
nient to categorize this information as either instructions or data. Instructions, or machine
instructions, are explicit commands that

e Govern the transfer of information within a computer as well as between the computer
and its I/O devices

e Specify the arithmetic and logic operations to be performed

A program is alist of instructions which performs a task. Programs are stored in the memory.
The processor fetches the program instructions from the memory, one after another, and
performs the desired operations. The computer is controlled by the stored program, except
for possible external interruption by an operator or by I/O devices connected to it. Data are
numbers and characters that are used as operands by the instructions. Data are also stored
in the memory.

The instructions and data handled by a computer must be encoded in a suitable format.
Most present-day hardware employs digital circuits that have only two stable states. Each
instruction, number, or character is encoded as a string of binary digits called bits, each
having one of two possible values, O or 1, represented by the two stable states. Numbers are
usually represented in positional binary notation, as discussed in Section 1.4. Alphanumeric
characters are also expressed in terms of binary codes, as discussed in Section 1.5.

1.2.1 Ineut UNIT

Computers accept coded information through input units. The most common input device is
the keyboard. Whenever a key is pressed, the corresponding letter or digit is automatically
translated into its corresponding binary code and transmitted to the processor.

Many other kinds of input devices for human-computer interaction are available, in-
cluding the touchpad, mouse, joystick, and trackball. These are often used as graphic
input devices in conjunction with displays. Microphones can be used to capture audio
input which is then sampled and converted into digital codes for storage and processing.
Similarly, cameras can be used to capture video input.

Digital communication facilities, such as the Internet, can also provide input to a
computer from other computers and database servers.

1.2.2 MEgemMORY UNIT

The function of the memory unit is to store programs and data. There are two classes of
storage, called primary and secondary.
Primary Memory

Primary memory, also called main memory, is a fast memory that operates at electronic
speeds. Programs must be stored in this memory while they are being executed. The
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memory consists of a large number of semiconductor storage cells, each capable of storing
one bit of information. These cells are rarely read or written individually. Instead, they are
handled in groups of fixed size called words. The memory is organized so that one word can
be stored or retrieved in one basic operation. The number of bits in each word is referred
to as the word length of the computer, typically 16, 32, or 64 bits.

To provide easy access to any word in the memory, a distinct address is associated
with each word location. Addresses are consecutive numbers, starting from 0, that identify
successive locations. A particular word is accessed by specifying its address and issuing a
control command to the memory that starts the storage or retrieval process.

Instructions and data can be written into or read from the memory under the control of
the processor. It is essential to be able to access any word location in the memory as quickly
as possible. A memory in which any location can be accessed in a short and fixed amount
of time after specifying its address is called a random-access memory (RAM). The time
required to access one word is called the memory access time. This time is independent of
the location of the word being accessed. It typically ranges from a few nanoseconds (ns)
to about 100 ns for current RAM units.

Cache Memory

As an adjunct to the main memory, a smaller, faster RAM unit, called a cache, is used
to hold sections of a program that are currently being executed, along with any associated
data. The cache is tightly coupled with the processor and is usually contained on the same
integrated-circuit chip. The purpose of the cache is to facilitate high instruction execution
rates.

At the start of program execution, the cache is empty. All program instructions and
any required data are stored in the main memory. As execution proceeds, instructions
are fetched into the processor chip, and a copy of each is placed in the cache. When the
execution of an instruction requires data located in the main memory, the data are fetched
and copies are also placed in the cache.

Now, suppose a number of instructions are executed repeatedly as happens in a program
loop. If these instructions are available in the cache, they can be fetched quickly during the
period of repeated use. Similarly, if the same data locations are accessed repeatedly while
copies of their contents are available in the cache, they can be fetched quickly.

Secondary Storage

Although primary memory is essential, it tends to be expensive and does not retain in-
formation when power is turned off. Thus additional, less expensive, permanent secondary
storage is used when large amounts of data and many programs have to be stored, particu-
larly for information that is accessed infrequently. Access times for secondary storage are
longer than for primary memory. A wide selection of secondary storage devices is available,
including magnetic disks, optical disks (DVD and CD), and flash memory devices.

1.2.3 ARITHMETIC AND LogGic UNiT

Most computer operations are executed in the arithmetic and logic unit (ALU) of the
processor. Any arithmetic or logic operation, such as addition, subtraction, multiplication,
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division, or comparison of numbers, is initiated by bringing the required operands into the
processor, where the operation is performed by the ALU. For example, if two numbers
located in the memory are to be added, they are brought into the processor, and the addition
is carried out by the ALU. The sum may then be stored in the memory or retained in the
processor for immediate use.

When operands are brought into the processor, they are stored in high-speed storage
elements called registers. Each register can store one word of data. Access times to registers
are even shorter than access times to the cache unit on the processor chip.

1.2.4 Ovutrput UNIT

The output unit is the counterpart of the input unit. Its function is to send processed results
to the outside world. A familiar example of such a device is a printer. Most printers employ
either photocopying techniques, as in laser printers, or ink jet streams. Such printers may
generate output at speeds of 20 or more pages per minute. However, printers are mechanical
devices, and as such are quite slow compared to the electronic speed of a processor.

Some units, such as graphic displays, provide both an output function, showing text
and graphics, and an input function, through touchscreen capability. The dual role of such
units is the reason for using the single name input/output (1/0) unit in many cases.

1.2.5 ConTrOL UNIT

The memory, arithmetic and logic, and I/0 units store and process information and perform
input and output operations. The operation of these units must be coordinated in some way.
This is the responsibility of the control unit. The control unit is effectively the nerve center
that sends control signals to other units and senses their states.

I/O transfers, consisting of input and output operations, are controlled by program
instructions that identify the devices involved and the information to be transferred. Control
circuits are responsible for generating the timing signals that govern the transfers and
determine when a given action is to take place. Data transfers between the processor and
the memory are also managed by the control unit through timing signals. It is reasonable
to think of a control unit as a well-defined, physically separate unit that interacts with other
parts of the computer. In practice, however, this is seldom the case. Much of the control
circuitry is physically distributed throughout the computer. A large set of control lines
(wires) carries the signals used for timing and synchronization of events in all units.

The operation of a computer can be summarized as follows:

*  The computer accepts information in the form of programs and data through an input
unit and stores it in the memory.

¢ Information stored in the memory is fetched under program control into an arithmetic
and logic unit, where it is processed.

e  Processed information leaves the computer through an output unit.

e  All activities in the computer are directed by the control unit.
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1.3 Basic OPERATIONAL CONCEPTS

In Section 1.2, we stated that the activity in a computer is governed by instructions. To
perform a given task, an appropriate program consisting of a list of instructions is stored
in the memory. Individual instructions are brought from the memory into the processor,
which executes the specified operations. Data to be used as instruction operands are also
stored in the memory.

A typical instruction might be

Load R2,LOC

This instruction reads the contents of a memory location whose address is represented
symbolically by the label LOC and loads them into processor register R2. The original
contents of location LOC are preserved, whereas those of register R2 are overwritten.
Execution of this instruction requires several steps. First, the instruction is fetched from
the memory into the processor. Next, the operation to be performed is determined by the
control unit. The operand at LOC is then fetched from the memory into the processor.
Finally, the operand is stored in register R2.

After operands have been loaded from memory into processor registers, arithmetic or
logic operations can be performed on them. For example, the instruction

Add R4,R2,R3

adds the contents of registers R2 and R3, then places their sum into register R4. The
operands in R2 and R3 are not altered, but the previous value in R4 is overwritten by the
sum.

After completing the desired operations, the results are in processor registers. They
can be transferred to the memory using instructions such as

Store R4, LOC

This instruction copies the operand in register R4 to memory location LOC. The original
contents of location LOC are overwritten, but those of R4 are preserved.

For Load and Store instructions, transfers between the memory and the processor are
initiated by sending the address of the desired memory location to the memory unit and
asserting the appropriate control signals. The data are then transferred to or from the
memory.

Figure 1.2 shows how the memory and the processor can be connected. It also shows
some components of the processor that have not been discussed yet. The interconnections
between these components are not shown explicitly since we will only discuss their func-
tional characteristics here. Chapter 5 describes the details of the interconnections as part
of processor organization. :

In addition to the ALU and the control circuitry, the processor contains a number
of registers used for several different purposes. The instruction register (IR) holds the
instruction that is currently being executed. Its output is available to the control circuits,
which generate the timing signals that control the various processing elements involved
in executing the instruction. The program counter (PC) is another specialized register. It
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Figure 1.2  Connection between the processor and the main memory.

contains the memory address of the next instruction to be fetched and executed. During the
execution of an instruction, the contents of the PC are updated to correspond to the address
of the next instruction to be executed. It is customary to say that the PC points to the next
instruction that is to be fetched from the memory. In addition to the IR and PC, Figure 1.2
shows general-purpose registers R through R,_, often called processor registers. They
serve a variety of functions, including holding operands that have been loaded from the
memory for processing. The roles of the general-purpose registers are explained in detail
in Chapter 2.

The processor-memory interface is a circuit which manages the transfer of data between
the main memory and the processor. If a word is to be read from the memory, the interface
sends the address of that word to the memory along with a Read control signal. The interface
waits for the word to be retrieved, then transfers it to the appropriate processor register. If
a word is to be written into memory, the interface transfers both the address and the word
to the memory along with a Write control signal.

Let us now consider some typical operating steps. A program must be in the main
memory in order for it to be executed. It is often transferred there from secondary storage
through the input unit. Execution of the program begins when the PC is set to point to the



