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PREFACE

In September 1984 a summer school in analysis was held at Peking
University. The subjects dealt with were topics of current interest in the
closely interrelated areas of Fourier analysis, pseudo-differential and
singular integral operators, partial differential equations, real-variable
theory, and several complex variables. Entitled the ‘“‘Summer Symposium
of Analysis in China,’’ the conference was organized around seven series
of expository lectures whose purpose was to give both an introduction of
the basic material as well as a description of the most recent results in
these areas. Our objective was to facilitate further scientific exchanges
between the mathematicians of our two countries and to bring the students
of the summer school to the level of current research in those important
fields.

On behalf of all the visiting lecturers I would like to acknowledge our
great appreciation to the organizing committee of the conference: Pro-
fessors M. T. Cheng and D.G. Deng of Peking University, S. Kung of the
University of Science and Technology of China, S. L. Wang of Hangzhou
University, and R. Long of the Institute of Mathematics of the Academia
Sinica. Their efforts helped to make this a most fruitful and enjoyable

meeting.

E. M. STEIN
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NON-LINEAR HARMONIC ANALYSIS,
OPERATOR THEORY AND P.D.E.

R. R. Coifman and Yves Meyer

Our purpose is to describe a certain number of results involving the
study of non-linear analytic dependence of some functionals arising
naturally in P.D.E. or operator theory.

To be more specific we will consider functionals i.e., functions
defined on a Banach space of functions (usually on R™ ) with values in
another Banach s pace of functions or operators.

Such a functional F:B, -~ B, is said to be real analytic around 0 in

B, if we can expand it in a power series around 0 i.e.

FE) = Y, A®

k=0

where A (f) is a ““homogeneous polynomial’’ of degree k in f. This

means that there is a k multilinear function
/\k(fl---fk): B, xB,---xB - 82

(linear in each argument) such that /\k(f) = Ak(f. f,---f) and

k
@) 1A Bllg g ek 1‘[1 Itls,
J:

for some constant C. (This last estimate guarantees the convergence of

the series in the ball HfHB < —lc )
I
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Certain facts can be easily verified. In particular if F is analytic
it can be extended to a ball in B‘; (the complexification of B, ) and the
extension is holomorphic from B‘; to Bg i.e., F(f+zg) is a holomor-
phic (vector valued) function of z ¢ C, |z| <1, Vf, g sufficiently small.
The converse is also true. Any such holomorphic function can be ex-
panded in a power series, (where Ak is % x the kP Frechet differen-
tialat 0).

We will concentrate our attention on very concrete functionals arising
in connection with differential equations or complex analysis, and would
like to prove that they depend analytically on certain functional parameters.

As you know there are two ways to proceed.

1. Expand in a power series and show that one has estimates (1).

2. Extend the functional to the complexification as ‘‘formally holo-
morphic’’ and prove some boundedness estimates.

Let L denote a differential operator like

a(x)agx— xeR,

a(z)a% z €C

2 9%1 aij(x) 0871 =div A(x) grad, A = (aij) x ¢ R?

0 n
a..(x) x.¢R
2 1) alaxj

the coefficients a(x) (or aij(x) ) will be assumed to belong to some
Banach space B, of functions (for example L*). It is natural to ask

when such objects as:
L}, JC, sgiL, gt e tVL

or more generally, (L) (where ¢ :C - C ), can be defined as a bounded
operator (say on L2 or some Soboleff space), and a functional calculus
developed i.e., ¢1(L)¢2(L) = ¢~1 ¢>2(L).
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Many questions arise:

a) Does F(a) = ¢(L) viewed as an operator valued function of a
depend analytically on a ?

This is equivalent to asking whether we can consider complex valued
coefficients in L and still have estimates on ¢&(L).

b) What is the largest domain of coefficients a for which we have
estimates for ¢(L) ? This question is the same as asking what is the
largest B, for which (1) holds, and what is the domain of holomorphy of
F(a) in this space.

The answer to question a) will require first that we understand methods
for expanding functionals in a power series, and second, that the nature of
the multilinear operators A} be sufficiently well understood to provide
estimates (1). As for question b) we will see that the largest spaces
possible for the coefficients involve rough coefficients and leads us to
work with coefficients in L®, B.M.O. and other ‘‘exotic spaces.”

We now start with a fundamental example related to the Cauchy

integral. We let
1 1d :
L, o P with [lal| <1 a(x), real valued.
If we define h(x) = x+A(x), A’(x) =a. We then have
= .l_d oh~1) o —1_ i A
Laf_(idxf h ) h-lu 4yl

where

Uhf =foh.

Of course, in this case, if we use the Fourier transform we can define

o(} &) - f ei*€ 4(&) f€) ¢ .

—00
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This gives, for example

sgn(li_g_x)f=fei*fsgn§f(¢”)df=%p.v. f gt -ne) .

Thus we can define

o0

B 1d ste _f®d+al) 4
msgn(Ly)f = nUysgn T d% Up f=pv. f x—t+A (x)-A(t) o

—o00

(where we used the observation that ¢(ULU™Y) = Ug(L)U™!).

We view

F(a) =sgn L, as an operator on L2(R)

and wish to know whether it is analytic on L™ or if we can replace a
by complex a and still have a bounded operator.

If we do this, writing a =a +if8 |afl <1, we find

B f(t) (1+ia+if3)
F(a)f —fx t+A(x)+lB(;l) +:A(t)—1B(t)

. f (D[ +a)/(1+a))0 +a)
x+Ax) -t-A(t) +i(B(x) - B(t))

-1
= UhCUh fl

where

- f(t) (1+B'1(t))
h = X+A(x)an = f x—t+lBl(x)—1B1(t)

—00

£,0) =1 %f‘;B © B, = Beh!
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Since Uy is bounded on L2 it would suffice to prove that C is
bounded on L? for all B such that B’ is small.

We could also try to prove this by expanding

(e8]

: | ) a+a@) - k Ax) -A®)\ K +a)
-im sgnlly)t "f el dt = D, 1) f ( — ) e,

—00

Observe that the operators are of the form

x—t

T(f):f\v(“_(’i)i@)%tldt :fk(x,t)f(t)dt.
We will prove Theorem I: Let ¥ ¢C®(C) and A(x) such that

_ A(x) -A f
|i@i—_tA(Q’SM and T(f):p.v.f‘l’(—(x’)(__ym))%dy.

Then the operator T is bounded on L2(R) (and LP 1< p < ). This
result will then be extended to R™ and other settings.
We now return to the interpretation of C as the Cauchy integral for

the curve z(t) =t + iA(t) where A is Lipschitz

A(t)

as we can see its boundedness in L? is equivalent to the analytic
dependence of C(a)f on the curve a. This now is related to the lectures

by C. Kenig (to which we shall return later).
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Let us consider a more general version of the Cauchy integral.
Let I" be a rectifiable curve through 0, s be the arc length

parameter
S

z’(s) —el2) j e . z(s) = f ela(t)yt
[¢]

The Cauchy integral on [' is given as:

f(t)z (t
CR®) = p.v. f ZSL))__z%dt

— 00

. f‘ 1 f®z°0) 4
z(s)—z(t) s-t
=00 s—t

00

. p(ze)-z@) 1O 4,
s—t s—t
if we assume
* 0<5< ‘z_(%%@. <1

we can take fC‘(’;(C)l/l(z) = 11? on &< |z| <1 and obtain the bounded-
ness on L2 of Cp (from Theorem I).

Condition * is the so-called chord arc condition and * for 6 small is
equivalent to a ¢ BMO with ua“BMO small (see [3]). If we think of C
as an operator valued functional of a, we will see that B.M.O. is the

space of analyticity or holomorphy of Cu-

§2.

All the operators which we encountered previously had the form
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T(f) = P-V-fK(x,y)f(Y)dy

, moreover they were also

C
where [K(x,y)| < e [0 K| + |9 K| <
lx-y| ¥ ¥ Ix -yl

antisymmetric i.e.,
K(X.Y) = “K(y,X) .

A(x)-A s oo
(For example, K(x,y)=d>(£3(—_y—(-!-) x%y b eC* A’¢L™.) Recently

G. David and J.-L. Journe found a necessary and sufficient condition for
such operators to be bounded on L2 (or LP). This condition is simply
that T(l) must be of bounded mean oscillation.

We now would like to state certain facts concerning B.M.O. and

prove their theorem.
Recall that b ¢ BMO(R) if

/2

) §
v, = s?pﬁ flb—ml(b)lzdx < o, where ml(b)=|}—I b(x)dx
1

and I is an interval (or a cube in R™ ), and that this norm is equivalent

to the following ‘““Carleson’’ norm

I
1 dxd
ol [ [ s
I 0

where =+ (%) ¥ ¢C5, fdx =0 @ #0) (see [5]).

A basic reason for the frequent occurrence of functions in B.M.O. is

172

the following simple fact.

PROPOSITION. If T is as above and T is bounded on L% then T
maps L into B.M.O.
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Proof. Let b ¢L™ and let I be given. Consider I=2I and write
B = Tb = T(bxyp + T -x) =B, +b,.
Clearly

The first term is dominated by

1/2 1/2
1 v o2 1 2
2<mf|b1| dx) §C<l—l-| flb”) gCIIme.
I I

For the second we observe that

T(by)(x) - T(b,)(u) = lf[K(x,y)— K(u.y)]bz(y)dy'

< f T ayiibl, < cibll, -
|

|x-y
[x—y|>|1]

Integrating in y we get

which shows that second term is bounded by C|b|_. We have thus shown
the necessity of the condition T(1) ¢ BMO. Before stating the theorem

precisely we would like to reformulate it somewhat.
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Let ¢ eC (R ) with fpdx =1 and ¢ =@(x). Let (}S;‘(u):
= qS( —x) and similarly for t//t (u). We claim that under the preceding

assumptions on T we have

[<TYE, ¢ >| < CPx-y) = Cp ——
()

In fact, assume for simplicity, that ¢ is supported in (-1,1). Since

f¢du =0, if we assume |x-y| > 3t

|<Tllli‘,¢{>l = ’fq‘»{(Z) f[K(Z.U)—K(Z.X)]!/'f(U)du dz

flsb (Z)I |¢"(u)|dudz <C

ly- Xl2

(where we used the fact that |y-z| <t, |x—u|<t, |x-y|> 3t and the
hypothesis |d K(x,y)| < [x-y|72).
If |x-y| <3t we use the antisymmetry of k(x,y) to write

[<Ty, ¢ >l = I3 f f K(z,u) (U () #] (2) - ¥ @) ¢} (u)) dz du]

but Il/lf(u)¢¥(z)—¢¥(u)t/1¥(z)| < M and the fact that |u—x| <t,
t
lu—z| <t, |x-y|<3t and |K(z,u)| < ‘

imply
z— ul

> L C
I<T¢t:¢t >| S T A

Combining these estimates proves our claim.
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We can now state

THEOREM (G. David, J.L. Journe) [7]. Let T:D » 9" such that for some
e>0

kTgy,gp>ict . — L —pww
1+ |92y
t
and
*,V gus) o1 1 _ .
* KTy, ¢ >| < ; r p(u-v) .
o

Then the necessary and sufficient condition for T to extend to a bounded

operator on L2 into L2 is that
T(@1) and T*1) be in B.M.O.

We would like to make a few comments concerning the conditions *.

We have just seen that if

T(¢) = p.v.fk(X,y)f(y)dy

where
1° |k(x,y)| <—L
|x-y|
5 1 ly-y!|¢ 1
2 [k(x,y ") - kx,y)| L= foe -yl > 2y-y |
x—y|" **
and
1 x—x1|¢ 1
|k(x*,y) - k(x,y)| < for |x-y| >2|x—=x"|
|x—y|1+€

for some €> 0.

3 [STE@E, 6] >1 + IKT*YP. ¢y > <€ .



