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INTRODUCTION

I. 1. Hirschman, Jr.

The eight articles in the present volume do not all presuppose
the same mathematical background; they are directed generally
to readers at the advanced undergraduate and first-year graduate
level.

The initial article by H. J. Bremermann is a description of part
of the modern theory of several complex variables which is centered
about the successful efforts of mathematicians to understand fully
the remarkable continuation properties possessed by analytic
functions of several complex variables. Other topics central in
this theory, such as the Cousin problems, analytic sets, etc., are
discussed, although more briefly.

Graves’ paper deals with a less extensive area, that of nonlinear
functions from one Banach space to another, and in particular
with the implicit function theorem. The material considered is
treated in detail. Since this subject is beginning to make its way
into advanced calculus texts, it is particularly fortunate to have
this exposition. It is to be noted that Graves’ paper has some
elements in common with ‘“Preliminaries to Functional Analysis”
by Casper Goffman in Volume 1 of this series and that the two
papers can be profitably read together.

Hille’s paper on semi-groups gives a brief description of this
vast area of analysis. The reader is introduced to such central,
structural features of semigroup theory as the resolvant and the
infinitesimal generator, and is also afforded a hint of the applica-
tions of this theory to stochastic processes and partial differential
equations. Hille’s article also makes contact with that of Goffman
referred to above.

The article written by Hirschman and Widder is devoted to a
relatively specific problem—the genesis of the real inversion for-

mulas of the Laplace and Stieltjes transforms. These formulas
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2 1. 1. Hirschman, Jr.

and the corresponding representation theory are now seen, after
some decades, to be a partly autonomous chapter within the very
extensive area of totally positive matrices, variation diminishing
transformations, and their extensions and generalizations.

Schaefer’s paper is entirely different in spirit than the others
in this volume in that it treats a classical subject, the Lebesgue-
Stieltjes integral, in detail. Schaefer’s approach is that of Daniell
and F. Riesz; that is, the Lebesgue integral is constructed by an
extension process from the Riemann integral, the theory of measure
appearing only as a byproduct and at the end. Because it is both
brief and rather complete, Schaefer’s paper affords a unique op-
portunity to sample the elegance of this less familiar method.
Moreover, this paper can serve as a convenient source for many
of the measure theoretic results required in the other papers of
these volumes.

Weiss’ paper is simultaneously a detailed exposition of certain
basic parts of harmonic analyses and an introduction to and
description of selected advanced topics. The principal emphasis
is on harmonic analysis in its classical form and here the exposi-
tion introduces the reader to the concept of “weak type” and to
the Marcinkiewicz interpolation theorem, ideas which have played
an important role in harmonic analysis in the last decade. The
article concludes with a brief discussion of abstract harmonic
analysis on locally compact Abelian groups.

Widom’s paper is addressed to a rather specific problem, the
inversion of semi-infinite Toeplitz operators. It can be profitably
read in conjunction with Lorch’s “The Spectral Theorem” in
Volume 1 of this series. It is particularly: interesting to see how,
confronted with a conerete problem in spectral theory, the author
draws on other phases of mathematics, in this case on the theory
of Fourier series and analytic functions, in order to obtain a
solution.

The articles of this volume treat only a small sample from the
many topies of current interest in analysis, but it is believed that
they are an interesting selection and it is hoped that the present
volume will be a worthy successor to the elegant “Studies in
Modern Analysis,” which is Volume 1 in this series.



SEVERAL COMPLEX VARIABLES

H. J. Bremermann

The theory had its beginning shortly before the turn of the
century. At first concepts and methods of the theory of one com-
plex variable were generalized. Very soon, however, problems
were encountered that were well understood in the case of one
variable, but defied solution for two and more variables. Also,
F. Hartogs [26], [27] (between 1906 and 1910) discovered pro-
found results about analytic continuation and ‘“natural bound-
aries” that are false for one variable. It became clear that the
theory of several complex variables is not a mere generalization
from one to n, but a distinct theory of its own.

After Hartogs, progress was slow for about twenty years.
Then H. Behnke, H. Cartan, and P. Thullen developed the theory
of domains and envelopes of holomorphy #nd S: Bergman began
to investigate the kernel function and invariant metric (called
after him).

3



4 H. J. Bremermann

In 1934 Behnke and Thullen summarized the knowledge up to
that time in their book, Theorie der Funktionen mehrerer komplexer
Verdnderlichen [2] (still of interest).

Some of the outstanding problems mentioned in Behnke-Thullen
have since been solved: (1) the analogue of “Runge’s theorem,”
(2) construction of a meromorphic function to locally given poles
(the so-called ‘“‘additive Cousin problem”) and construction of a
holomorphic function to locally given zeros (multiplicative Cousin
problem), and (3) the local characterization of the domains of
holomorphy. The solutions of these problems are mostly due to
K. Oka [32]-[40].

In recent years investigations have proceeded to complex mani-
folds and lately to ‘“‘complex spaces,” which are the n-dimensional
analogues of Riemann surfaces. The language of ‘‘sheaves’” has
been developed and found to be an appropriate and powerful
tool for studying functions and sets of functions on manifolds
and complex spaces. Also, connections with Banach algebras have
developed, and recently several complex variables have become
important in theoretical physics (quantum field theory) [16].

Recently several books and notes on several complex variables
have become available. B. A. Fuks [21] has appeared in a new
and completely revised edition (translated into English) and a
second volume has been added [22]. Topies that are of importance
for quantum field theory have been treated by Vladimirov [50].
Excellent lecture notes have been compiled by L. Bers [7] and
by L. Hoérmander [28]. Of an earlier date are: Bochner-Martin
[3] and Cartan seminaire 1951-1952 [19].

In what follows I will try to give a glimpse of the theory by
emphasizing the problems mentioned above, around which much
of the research has grown.

It is impossible in this limited space to deal with ‘‘sheaves,”
“complex manifolds,” and ‘“‘complex spaces.”” We can only touch
on these subjects, giving references to the original literature. We
also had to leave out Bergman’s theory. An excellent introduction
to this theory can be found in Bergman [5, chap. 11], and a more
detailed representation in Bergman [6].
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1. THE SPACE OF N-TUPLES OF COMPLEX NUMBERS C"

From the familiar complex numbers we may form n-tuples.

The collection of all n-tuples z = (2, - - -, 2,) of complex numbers
21, ++ -, 2o 1s denoted by C=. We make it a linear vector space by
introducing addition

2 4 2@ = (29), ses, 2;;1)) 4« (zi“”, ses, zﬁf))

= (o + 2%, -+, 2@ + 2);
and multiplication with a complex scalar A
A=Az, o0y 20) = N2y, -0 0, AZy).

The addition is associative and commutative because it is defined
as addition of the components, which are complex numbers.
Analogously the multiplication by a scalar is distributive.

We leave it to the reader to verify that all the axioms of a linear
vector space are satisfied.

1.1 The C* becomes a Banach space by introducing a norm
I || satisfying: (1) ||| > 0 if 2 > 0;(2) []z® + 2®|| < [lz®[| +
z®1l; 3) |IN2]] = (JA| |]2]]), where X is a complex number; (4) the
C" is complete with respect to the norm; that is, if for a sequence
{2}, 2 & C* we have |z — z®|| tending to zero as j and &
tend to infinity, then there exists an element 2® & C" such that

lim ||z — 2] = 0.
j—o®

Examples of Norms. The ecuclidean norm: |z||? = |22 +
-+ 4+ |2,/>. The maximum norm: |[z]|, = max {|z], - -, [2.|}.
Every norm induces a topology if one defines as neighborhoods
of a point z(® the point sets

{z|]lz — 2|| < ¢; e > 0}.

It is easy to show (the reader may carry out the proof) that:
Tor any norm || || there exist two numbers p > 0 and ¢ > 0
such that for any z € C* we have

pllzllm < [l2ll < oll2]lm,

where || || is the maximum norm.



6 H. J. Bremermann

A consequence of this fact is: In the C™ all the topologies generated
by different norms are equivalent.

1.2 An open set C* is called a region, and an open and connected
set is called a domazn.

1.3 The C= is topologically and as additive group isomorphic to
the additive group of 2n-tuples of real numbers R?» if we associate
g (171, ey Xy Y1y yn); where Z2j = Xj + 'Ly, and Il(xy y)“ =

2. LINEAR SUBSPACES

2.1 We say that the C» is of “‘complex dimension n.” A linear
subspace of complex dimension p is a subset of the C* that can be
written in the form

{zlz=Nai+ -+ Map; Ay -+, Np) € C7,

where a4, - -+, a, € C* and fixed.
2.2 A “4ranslated linear subspace”

{2 I 2 =204 Na; + - + ApQp; O‘ly "'y)‘P) & Cp}:

", ay, -+, a, € C* and fixed) we will call a complex p-plane.

Instead of being defined by such a parameter representation, a
complex p-plane can also be given by n — p linear equations.

It should be noted that while every complex p-plane C* is also
a real 2p-plane in the associated R?", the converse is not true.
There are real 2p-planes in the R?** that are not complex p-planes
in the C.

The reader may verify that the real 2-plane

E={z|x =0z, =0}

is not a complex 1-plane in the C2.

3. SPECIAL DOMAINS

An arbitrary domain in C* can be visualized directly only for
n = 1 because already for C? the-associated real space is of real
dimension 4. One method of visualizing domains D in C? is to
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fix one of the four associated real variables, for instance, y,, and
to look at the intersections

(O

DN |y =y}

for various values of y3.

Some domains with sufficient symmetry can also be represented
by a point set in a real space R? or R°.

Examples

3.1 The hypersphere: {z | |a1]> +
-+ 4 |z,2 < r}. (This is the
“ball” of radius r in the euclidean
norm.) For n = 2 it can be rep-
resented graphically as shown in

2]

Fig. 1.
3.2 The polycylinder: {z| |z|
> Ly ey 2] < b (For ro=
# = . =71, = r this is the

“ball” of radius r in the maxi-
mum norm.) The polyeylinder
(see Fig. 2) is the direct product or tf & wr discs

{a|lal <n} X - XKl loa| <7}

For complex dimension 1 both hypersphere and polycylinder
coincide with the circle. For higher
dimension they take with equal .,
right the place of the circle,
but they cannot even be mapped
holomorphically onto each other.
(This can be shown by means of
invariants formed from Bergman’s
kernel function.)

3.3 Product domains: {z|z €
Dy, -+, 2, € D,}, where Dy, ---,
D, are plane domains. See Fig.
3. The polyeylinder is a product Figure 2
domain where the D; are circles.

Figure 1

AN

|z
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Z,-plane
Z;,-plane

, X %/
o

Ficure 3

3.4 Circular domains (also denoted as “Reinhardt domains”):

{2 l (121 - zi())l’ T |zn - zﬁtml) & E})

where E is a set in the (lz; — 2{%|, - - -, |z, — 2¥|)-space. A circular

domain admits the automorphisms:
=) =%z —20), k=1,---,n,

where 6y, - - -, 6, are arbitrarily real. See Fig. 4. The hypersphere
and the polycylinder are special circular domains.

3.5 Tube domains: {z |z € X, y arbitrary}, z; = z; + iy;, * =
(1, *+,Zn), ¥y = (Y1, * -+, Yn), and X is a domain in the space of
the real parts (zi, - - -, x,). See Fig. 5.

3.6 Hartogs domains: {(z,w) |z € D, r(z) < |lw — w®| < R(2)},
where D is a domain in the C*, w &€ (C?, and r(z) and R(z) are
positive functions.

X
|z.] z

X
|2l !

Ficugre 4 Ficure 5



SEVERAL COMPLEX VARIABLES 9

[wl| wl = R(2)

F1GURE 6

More generally, a Hartogs domain is a domain in (z, w)-space,
2 € C», w & (', that permits the following group of automor-
phisms: z* = z, w* — w® = e¥(w — w®), § arbitrary real. See
Fig. 6.

4. HOLOMORPHIC FUNCTIONS

4.1 A function is the association of one and only one element
in a certain ‘“value set’” to every element in an ‘“‘argument set.”

We will consider functions such that the values are complex
(or real) and where the argument set is a domain in the C~.
p-tuples of such functions can be considered as one function with
values in a C?.

4.2 We remind the reader that the holomorphic functions of
one complex variable can be characterized by four different prop-
erties:

A function f(z) is holomorphic in a domain D C C* if and only
if

(1) At each point z2® of D it can be developed into a power
series

1@ = Z afe — 20y

that converges in a neighborhood of z(®.
(2) At each point 2 of D the function f(2) possesses a complex
derivative. This is the case if and only if f(z) possesses continuous
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partial derivatives and the Cauchy-Riemann differential equations
are satisfied in D. The latter can be written in the very simple
form

af
9z

if we introduce the differential operator

9 1/9 . d
62_2<é)z+26y>

In addition one also defines

9 _1 <i ~i>.
oz 2\ox ~ oy
(3) w = f(z) maps the neighborhood of any point 2 & D at
which f'(2(®) £ 0 conformally. (That means: given two curves
through 2z, and the angle between their tangents, then the angle
between the tangents of the image curves in the w-plane is the
same, in magnitude and direction.)
(4) f(2) is holomorphic in D if and only if f(2) is continuous in

D and the integral _/; :J) f(©) di; 29, z € D, is locally independent

of the path of integration. (Cauchy’s theorem and Morera’s
theorem.)

TFach of these properties can be generalized to several variables
and defines a class of functions. The question arises: are these
classes of functions identical as they are for one variable?

4.3 DEFINITION: A complex-valued function f(z) defined in a
domain D C C™ s called holomorphic in D in the sense of Weier-
strass if it can be developed at each point z(® of D into a multiple
power series

J@ = 2 an..w@ =) G- @)
14 n=

that converges uniformly in a neighborhood of 2.

4.4 DEFINITION: A complex-valued function f(z) defined in a
domain D C C* s called holomorphic in D in the sense of Cauchy-



