Getting Started

with Structured BASIC
Second Edition
for the IBM PC

Nancy Stern
Robert A. Stern

A Wiley PC Companion

Getting Started
with
Structured BASIC

Second Edition

Nancy Stern
Hofstra University

Robert A. Stern
Nassau Community College

John Wiley & Sons, Inc.
New York Chichester Brisbane Toronto Singapore

ACQUISITIONS EDITOR ~ Beth Lang Golub
MARKETING MANAGER ~ Carolyn Henderson
PRODUCTION SUPERVISOR ~ Charlotte Hyland
MANUFACTURING MANAGER ~ Andrea Price

COPY EDITING SUPERVISOR Deborah Herbert

This book was set in Garamond Light by GTS Graphics and printed and bound by Hamilton Printing.
The cover was printed by Lehigh Press.

Recognizing the importance of preserving what has been written, it is a policy of John Wiley & Sons,
Inc. to have books of enduring value published in the United States printed on acid-free paper, and we
exert our best efforts to that end.

Copyright © 1990, 1993, by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that permitted by Sections 107 and 108 of
the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.
Requests for permission or further information should be addressed to the Permissions Department,
John Wiley & Sons.

ISBN 0-471-58709-5
Printed in the United States of America

10 98 7 6 5 4 3 21

Getting Started
with
Structured BASIC

Wiley PC Companions

Stern/Stern: GETTING STARTED WITH STRUCTURED BASIC, Second Edition

Murphy: GETTING STARTED WITH DOS 5.0

Russakoff: GETTING STARTED WITH WINDOWS 3.1

Kronstadt/Sachs: DISCOVERING MICROSOFT WORKS 2.0

Murphy: GETTING STARTED WITH WORDPERFECT 4.2/5.0**

Murphy: GETTING STARTED WITH WORDPERFECT 5.1

Murphy/Potter: GETTING STARTED WITH LOTUS 1-2-3, RELEASE 2.2

Farrell: GETTING STARTED WITH LOTUS 1-2-3, RELEASE 2.3

Murphy: GETTING STARTED WITH QUATTRO**

Arnolds/Hammonds/Isham: GETTING STARTED WITH dBASE III PLUS**

Gaylord: GETTING STARTED WITH dBASE IV

Wiley: EXPLORING DOS, WORDPERFECT 5.1, LOTUS 1-2-3 (RELEASE 2.2), AND dBASE
III PLUS

** Educational version software available
Wiley Macintosh Companions
Abernethy, Nanney and Porter: EXPLORING MACINTOSH: Concepts in Visually Oriented

Computing
Nanney, Porter and Abernethy: EXPLORING MICROSOFT WORKS 2.0—Macintosh

To Melanie-and Lori -

PREFACE

This book, which is part of the Wiley Getting Started series on software tutorials, focuses
on structured BASIC programming for IBM PCs and their compatibles. The book can be
used as a self-teaching guide or as a tutorial in conjunction with (1) an introductory course
in computing, or (2) a BASIC programming course. No prior programming or computing
experience is needed.

This book covers the fundamentals of BASIC programming, not the advanced features of
the language. The syntax explained in the text is compatible with virtually every PC version
of BASIC; where there are fundamental differences, they are specifically addressed in the
text. In addition, the programming concepts described in the text are common to all ver-
sions of BASIC and, indeed, to all programming languages. We use pseudocode throughout
the book as a program planning tool. We have written a relatively short introduction to
BASIC that will enable students to write elementary- and intermediate-level programs in a
relatively short time.

This book includes many of the pedagogic tools common to our other computing texts.
Each chapter is in outline form and has a step-by-step presentation of material followed by
numerous examples. Most chapters have self-tests with solutions at key points within the
chapter, full chapter self-tests, and review questions that can be assigned for homework.

Many BASIC books claim to present a structured version of the language but actually
begin with nonstructured examples or with a focus on syntax that fails to address struc-
tured programming concepts. From the very onset, we focus on BASIC programs that han-
dle a variable amount of input and that are fully structured.

In addition to emphasizing structured concepts, we focus on other programming tech-
niques for making programs easier to read, debug, maintain, and modify. These include
top-down and modular programming concepts and stylistic features such as useful naming
conventions and conventions for displaying meaningful comments.

We thank the following people at John Wiley for their assistance and support in the
preparation of this book:

Editorial—Beth Lang Golub, Bill Oldsey, Bonnie Lieberman
Production—Charlotte Hyland, Lucille Buonocore, Ann Berlin
Marketing— Carolyn Henderson, Steve Kraham
Proofreading—Shelley Flannery, Suzanne Ingrao
Copy Editing—Mary Konstant

vil

viii

Preface

We thank the following people for their assistance in reviewing the manuscript:

Gary Baker

Marshalltown Community College
Virginia Gregory

Hofstra University

Marilyn Meyer

Fresno City College

Bill Smith

Nassau Community College

Floyd Winters
Manatee Community College

Finally, we express our appreciation to our assistant, Carol L. Eisen, for her assistance
in preparing the manuscript.

If you have any questions, comments, or suggestions regarding this book, please
contact us through our editor, Beth Lang Golub, at John Wiley and Sons, Inc., 605 Third
Avenue, New York, NY 10158, 212-850-8619. We can also be reached via Bitnet at
ACSNNS@HOFSTRA, or via Internet at ACSNNS@VAXC.HOFSTRA.EDU.

Nancy Stern
Robert A. Stern

CONTENTS

The Nature of BASIC

BASIC as a Universal Steps Involved in Writing
Language: = i mevrrr o o o 1 Programs 2
The Most Commonly Used
Versions for Micros 1

Techniques for Good Program Design
Structured Programming 5 Top-Down Programming 6
Modular Programming 5

A Sample BASIC Program

Definition of the Problem 7 The Program Illustrated 8
Input Layout 17
Output Layout and

Definition 7

A Review of the Elements of a BASIC Program

Interacting with Your Computer’s Operating System and BASIC
Translator

DOS Versions of BASIC for IBM Entering and Running a BASIC
Micros and Their Program Using Another
Compatibles 19 Translator or Computer ... 24

A Brief Overview of Pseudocode as a Program Planning Tool

Writing Elementary BASIC Programs

Input-Process-Output 31 The INPUT Statement 34
Defining Variable Names 31 The Assignment Statement ... 36
Defining Literals or String The PRINT and LPRINT

Constants 33 Statements 46

X

Contents

Making Output More
Readablé ;. w:vivassas oo 48
Editing Printed Data 49

8 Selection Using the IF Statement

Overview of the Four Logical
Control Structures 57
The IF Statement 59

The LPRINT USING and PRINT

USING Statements 50
Nested Conditional 74
Compound Conditional 79
Negating Conditionals 82

9 Iteration, Looping. and Subroutines for Logical Control and

Top-Down Programming
Iterative Techniques 87

10 Array Processing

An Introduction to Arrays ... 113
Using an Array to Store a Series of
Data Elements 113
Using the DIM Statement to Define
the Size of the Array 114
Using FOR . . . NEXT for
Processing an Array 116

Introduction to Subroutines for
Top-Down Modular
Programming 102

Reading Data into an Array .. 118

Summary 120
Key Terms 123
Final Quizzes 123
Practice Program 125
Programming Assignments ... 126

Appendix A: Reserved Words in QBASIC and BASICA

Appendix B: Brief Introduction to QBASIC and QuickBASIC

Menus
QuickBASIC Features 133
Logical Control Constructs in
QBASIC and QuickBASIC .. 135

Debugging 137

The QuickBASIC

Environment 138

1
The Nature of BASIC

BASIC as a Universal Language

BASIC is designed to be an easy-to-learn programming language that you can use
for writing programs in many applications areas. The term BASIC is an acronym
for Beginner’s All-Purpose Symbolic hstruction Code. When it was developed in
the early 1960s by John Kemeny and Thomas Kurtz at Dartmouth College, BASIC
was one of only a few existing symbolic programming languages. It gained imme-
diate and widespread popularity because it is easy to learn, easy to use and, at the
same time, powerful and flexible.

Today, there are dozens if not hundreds of versions of BASIC available for micro-
computers as well as mainframes. In fact, when micros were introduced in the
1970s, BASIC was the first and, in most instances, the only symbolic programming
language available for them. It remains the most widely used symbolic language
for microcomputers, and it is still used on mainframes as well.

Most Commonly Used Versions for Micros

Although there are numerous versions of BASIC for micros, several are predomi-
nant in the current marketplace. Note that PC-DOS is the version of DOS for IBM

personal computers (PCs), and MS-DOS is a comparable version for IBM-compat-
ible PCs.

Most Common Versions of BASIC for IBM PCs and IBM-Compatible PCs

Name How to Acquire Features
QBASIC Comes with PC-DOS 5 and Can be used on IBM PCs and
higher IBM-compatible PCs
BASICA Comes with PC-DOS 4 and Can be used only on IBM
lower computers and some compati-
bles
QuickBASIC Developed and sold by Micro- Can be used on IBM PCs and

soft for under $100

IBM-compatible PCs

2

Getting Started with Structured BASIC

GW-BASIC Used with MS-DOS, most often An older version of BASIC for

bundled with it; can be pur- IBM-compatible PCs; similar to
chased for under $100 BASICA for IBM computers

BASIC Comes with PC-DOS 4 and Very limited version just for
lower IBM PCs

Most inexpensive versions of BASIC—Ilike those just mentioned—are inter-
preted, not compiled. Only QuickBASIC, the most advanced of the BASIC versions
discussed in this text, gives you an option of either compiling or interpreting your
program.)

Compiled versions of a language save the translated, machine language code in
a program file that can then be executed over and over again. Because the need
for repeated translations is eliminated, compiled versions of BASIC are more useful
for programs that are to be run repeatedly than are interpreted versions, which
must be retranslated before each program run. For example, programs to be run
on a regular production basis are typically compiled. In addition, compiled ver-
sions of BASIC tend to translate and run faster. Most compiled versions of BASIC,
like QuickBASIC, are fully compatible with QBASIC and BASICA. This means that
programs written in QBASIC or BASICA can be translated into QuickBASIC and
then executed with little or no modification by means of QuickBASIC compilers.

QBASIC (for PC-DOS and MS-DOS 5.0 and higher) and BASICA (for PC-DOS 4
and lower on IBM computers) are typically bundled with the DOS disks themselves
so that their actual cost is negligible. As a result, they have been the most widely
used versions for IBM micros and their compatibles. QBASIC will likely become
as popular in the years ahead because it is bundled with all newer versions of DOS.

Compiled versions of BASIC, including QuickBASIC, must be purchased sepa-
rately, but they typically sell for under $100.

QBASIC is significantly more advanced than BASICA and has a menu format that
is more user-friendly. In this text we consider both QBASIC and BASICA in detail
and highlight their differences. We discuss the even more advanced QuickBASIC
as well. As noted, BASICA programs can easily be converted to QBASIC or
QuickBASIC format later on.

We focus on a common core of QBASIC and BASICA instructions that are likely
to run, with perhaps minor adjustments, using any version of BASIC.

To load in a version of BASIC, type the program name (QBASIC, BASICA, QB,
and so on) and press the Enter key. You are then ready to enter a program.

With QBASIC, a full-screen display appears after you type QBASIC. See Figure
1.1. Press the Esc key to clear the welcome message so that you can begin entering
a program.

With BASICA, prompts appear as in Figure 1.2 when you type the BASICA com-
mand. With BASICA, you can begin typing a program immediately.

Steps Involved in Writing Programs

Before discussing QBASIC and BASICA in depth, let us review the steps involved
in writing programs and the techniques that should be used for creating well-
designed programs.

The Nature of BASIC 3

Figure 1.1 |8 i e i g
Initial QBASIC
screen.

e IBM Personal Computer Basic
ersion A3.30 Copyright IBM Corp. 1981, 1982, 1983, 1984, 1985, 1986, 1987

Figure 1.2
Initial BASICA
screen.

1. Obtain the program requirements and specifications from a systems analyst or
from the user. A programmer can interact with either, depending on the
organization.

o

Plan the program using standard planning tools such as pseudocode and hier-
archy charts.

3. Write the program and desk-check it before keying it in.
4. Key in the program and desk-check it again; watch out for typos.

5. Translate the program by means of either a BASIC compiler or interpreter. If

4 Getting Started with Structured BASIC

there are any rule violations or syntax errors, they will be displayed on the
screen. Fix them and retranslate the program until there are no more syntax
errors.

6. Run the program using test data that includes a sample of what the actual data
is likely to look like. Using pencil and paper, manually determine the results
you should get and compare them with the computer-produced results. If there
are discrepancies, find the errors, fix them, and retranslate and rerun the pro-
gram until all the results are correct.

7. Test the program with actual data to ensure that it runs smoothly in a normal
operating environment.

8. Document the program so that users can run it without your intervention.

2

Techniques for Good Program
Design

Before you begin to write actual programs in the BASIC language, take the time
to review the following fundamental techniques for good program design.

Structured Programming

The most important technique for coding well-designed programs is called struc-
tured programming. Structured programming standardizes program design so
that all programs, regardless of the language in which they are written, have a
similar form. In general, structured programs are easier to read than nonstructured
programs. They are also easier to debug and modify if changes are required at a
later date. Moreover, they are easier to evaluate: programming managers and sys-
tems analysts are better able to assess programmers’ skills and the quality of their
programs.

For those of you who have had some previous programming experience, you
may have encountered nonstructured techniques such as the frequent use of
GOTOs, which is another term for a branch instruction. One major purpose of
structured programming is to simplify debugging by reducing the number of entry
and exit points (or “GOTOs”) in a program. For that reason, structured program-
ming is sometimes referred to as GOTO-less programming. Through the tech-
niques of structured programming, the GOTO statement is avoided entirely. In
BASIC, this means writing programs in which sequences are controlled by WHILE
loops or some other logical control statement.

Modular Programming

Long and complex structured programs are sometimes subdivided into modules—
also called subroutines, subprograms, or procedures. These are separate sets of
instructions that accomplish distinct functions. Programs that are subdivided into
modules are called modular programs; that is, subroutines, subprograms, or pro-
cedures are written as separate sections and are called into the main body of a
program when they are needed.

Getting Started with Structured BASIC

Program modules are not only written separately, but they also are often tested
independently. This makes it possible to segment a large or complex program into
individual sections so that, if necessary, different programmers can code and debug
these different sections. In summary, modular programs consist of individual sec-
tions that are executed under the control of a main module.

Top-Down Programming

Another important design technique that makes programs easier to read and more
efficient is called top-down programming. Top-down programming implies that
proper program design is best achieved by designing and coding major modules
before minor ones. Thus, in a top-down program, the main modules are coded
first, then intermediate modules are coded, and finally the minor ones are coded.
By coding modules in this top-down manner, the organization or flow of the pro-
gram is given primary attention.

The standardized top-down technique provides an effective complement to
structured programming, thereby achieving efficient and effective program design.

In this text we use structured techniques in all our programs and avoid GOTOs
entirely. In addition, we use a top-down approach in the more advanced programs
so that you will learn to program in a manner that is widely accepted as a standard
one.

3
A Sample BASIC Program

To understand the nature of BASIC, we will first look at a sample program that
solves a typical business problem. This program will run with all versions of the
BASIC language.

Definition of the Problem
A computer center of a company is assigned the task of calculating weekly wages
(gross pay) for all nonsalaried personnel. The employee name, hourly rate, and

number of hours worked are supplied as input for each employee, and the weekly
wages figure is to be computed as follows:

Weekly Wages = Hours Worked X Hourly Rate

Before processing can begin, the incoming data or input must be in a form that
is “readable” by the computer. The input may be keyed in or read in from a disk
or other storage medium.

Input Layout

Let us assume that the employee data will be keyed by means of a keyboard. As
you will see later, the device used for entering the input does not really affect the
program’s logic.

Each employee’s data consists of three fields called variables. A variable is a
storage area that will contain data. We will name the three variables that will con-
tain inputted data EMPNAMES$, HOURS, and RATE. Later, when we discuss rules
for forming variable names, you will see that the $ in EMPNAMES is required when
you are defining a variable that can contain alphabetic data.

Output Layout and Definition

For each EMPNAMES, HOURS, and RATE entered on the keyboard, the computer
will display on a screen the employee’s name and his or her weekly WAGES, which
will be calculated as HOURS multiplied by RATE.

7

