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Preface

Riemannian, symplectic and complex geometry are often studied by means
of solutions to systems of nonlinear differential equations, such as the equa-
tions of geodesics, minimal surfaces, pseudoholomorphic curves and Yang-
Mills connections. For studying such equations, a new unified technology
has been developed, involving analysis on infinite-dimensional manifolds.

A striking applications of the new technology is Donaldson’s theory of
“anti-self-dual” connections on SU(2)-bundles over four-manifolds, which
applies the Yang-Mills equations from mathematical physics to shed light
on the relationship between the classification of topological and smooth
four-manifolds. This reverses the expected direction of application from
topology to differential equations to mathematical physics. Even though
the Yang-Mills equations are only mildly nonlinear, a prodigious amount
of nonlinear analysis is necessary to fully understand the properties of the
space of solutions.

At our present state of knowledge, understanding smooth structures on
topological four-manifolds seems to require nonlinear as opposed to linear
PDE’s. It is therefore quite surprising that there is a set of PDE’s which
are even less nonlinear than the Yang-Mills equation, but can yield many
of the most important results from Donaldson’s theory. These are the
Seiberg-Witten equations.

These lecture notes stem from a graduate course given at the University
of California in Santa Barbara during the spring quarter of 1995. The
objective was to make the Seiberg-Witten approach to Donaldson theory
accessible to second-year graduate students who had already taken basic
courses in differential geometry and algebraic topology.

In the meantime, more advanced expositions of Seiberg-Witten theory
have appeared (notably [13] and [32]). It is hoped these notes will prepare
the reader to understand the more advanced expositions and the excellent
recent research literature.
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In the second edition, we have corrected several minor errors, and expanded
several of the arguments to make them easier to follow. In particular, we
included a new section on the Thom form, and provided a more detailed
description of the second Stiefel-Whitney class and its relationship to the
intersection form for four-manifolds. Even with these changes, the pace is
demanding at times and increases throughout the text, particularly in the
last chapter. The reader is encouraged to have pencil and paper handy to
verify the calculations.

We have treated the Seiberg-Witten equations from the point of view
of pure mathematics. The reader interested in the physical origins of the
subject is encouraged to consult [9], especially the article, “Dynamics of
quantum field theory,” by Witten.

Our thanks go to David Bleecker for pointing out that our earlier proof
of the Proposition on page 115 was incomplete, and to Lev Vertgeim and
an anonymous referee for finding several misprints and minor errors in the
text.
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Contents

Preliminaries

1.1 Introduction . . . . . . . . . ... ... ... ... .. ..
1.2 What is a vector bundle?
1.3 What is a connection? . . . . . .. . ... ... ... ...
1.4 The curvature of a connection . . . . . . . . . . . ... ..
1.5 Characteristic classes . . . . . . . . . ... ... ...
1.6 The Thom form . . . . . ... ... .. ... ... ... ...
1.7 The universal bundle . . . . . . .. . ... . .. ... .
1.8 Classification of connections . . . . . . . . . . . .. ... ..
1.9 Hodge theory . . . . . . .. ... ... ... ... ... ...

Spin geometry on four-manifolds

2.1 Euclidean geometry and the spin groups . . . . . ... . ..
2.2 What is a spin structure? . . . .. ... ... ... ...
2.3 Almost complex and spin® structures . . . . . . . ... . ..
2.4 Clifford algebras . . . . .. . ...
2.5 The spin connection . . . . . .. . ... . ... .. ... ..
2.6 The Dirac operator . . . . . . ... ... . ... ... ..
2.7 The Atiyah-Singer Index Theorem . . . . ... .. ... . .

Global analysis of the Seiberg-Witten equations

3.1 The Seiberg-Witten equations . . . . . . . . .. .. ... ..
3.2 Themoduli Space . . « + : o = s ¢ # # + v 5 o 4 & o o o o .
3.3 Compactness of the moduli space . . . . . .. . .. ... ..
3.4 Transversality . . . . . . . .. ...
3.5 The intersection form . . .. .. ... .. ... ... .. ..
3.6 Donaldson’s Theorem . . .. ... ... ... . ... .. ..
3.7 Seiberg-Witten invariants . . . . . . ... .. ... ... ..
3.8 Dirac operators on Kahler surfaces . . . . . . . ... .. ..
3.9 Invariants of Kéhler surfaces. . . . . . . . ... .. ... ..

45
45
49
53
54
58
63
67



viii CONTENTS

Bibliography 117

Index 120



Chapter 1

Preliminaries

1.1 Introduction

During the 1980’s, Simon Donaldson utilized the Yang-Mills equations,
which had originated in mathematical physics, to study the differential
topology of four-manifolds. Using work of Michael Freedman, he was able
to prove theorems of the following type:

Theorem A. There exist many compact topological four-manifolds which
have no smooth structure.

Theorem B. There exist many pairs of compact simply connected smooth
four-manifolds which are homeomorphic but not diffeomorphic.

The nonlinearity of the Yang-Mills equations presented difficulties, so
many new techniques within the theory of nonlinear partial differential
equations had to be developed. Donaldson’s theory was elegant and beau-
tiful, but the detailed proofs were difficult for beginning students to master.

In the fall of 1994, Edward Witten proposed a set of equations which give
the main results of Donaldson theory in a far simpler way than had been
thought possible. The purpose of these notes is to provide an elementary
introduction to the equations which Witten proposed. These equations are
now known as the Seiberg- Witten equations.

Our goal is to use the Seiberg-Witten equations to give the differential
geometric parts of the proofs of Theorems A and B. The basic idea is simple:
one constructs new invariants of smooth four-manifolds, invariants which
depend upon the differentiable structure, not just the topology.

The reader is undoubtedly familiar with many topological invariants
of four-manifolds: the fundamental group 7 (M), the cohomology groups
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H*(M), the cup product, and so forth. These topological invariants have
been around for a long time and have been intensively studied. The Seiberg-
Witten equations give rise to new invariants of four-dimensional smooth
manifolds, called the Seiberg-Witten invariants. The key point is that
homeomorphic smooth four-manifolds may have quite different Seiberg-
Witten invariants. Just as homology groups have many applications, one
might expect the Seiberg-Witten invariants to have many applications to
the geometry and differential topology of four-dimensional manifolds.

Indeed, shortly after the Seiberg-Witten invariants were discovered, sev-
eral striking applications were found.

One application concerns the geometry of embedded algebraic curves in
the complex projective plane CP2. Any such curve has a degree, which is
simply the number of times the curve intersects a projective line in general
position.

Algebraic topologists have another way of calculating the degree. A
nonsingular algebraic curve can be regarded as the image of a holomorphic
embedding

i: % — CP?

Y being a compact Riemann surface. The degree of the algebraic curve is
the integer d such that

ix(fundamental class in Hy(2;Z)) = d - (generator of Hy(CP?%;Z)). (1.1)

In many algebraic geometry texts (for example, page 220 in [19]), one
can find a formula for the genus of an embedded algebraic curve:

(d—1)(d —2)
—

Thom conjectured that if ¥ is a compact Riemann surface of genus g and
i:% — CP?
is any smooth embedding, not necessarily holomorphic, then

9> (d—l)(d—2),
2

the degree being defined by (1.1). (One would not expect equality for
general embeddings, since one can always increase the genus in a fixed
homology class by adding small handles.)

The Thom conjecture was proven by Kronheimer and Mrowka, Mor-
gan, Szabo and Taubes, and Fintushel and Stern, using the Seiberg-Witten
equations. These notes should give the reader adequate background to read
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the proof (versions of which are presented in [23] and [33]). The proof also
gives much new information about embeddings of surfaces in four-manifolds
other than CP2.

Another application of the Seiberg-Witten invariants comes from differ-
ential geometry. One of the most studied problems in Riemannian geometry
concerns the relationship between curvature and topology of Riemannian
manifolds. Perhaps the simplest type of curvature is the scalar curvature

s: M — R

of a Riemannian manifold M. The value of the scalar curvature at pis a
constant multiple of the average of all the sectional curvatures at p. Itis
interesting to ask: which compact simply connected Riemannian manifolds
admit metrics with positive scalar curvature?

Lichnerowicz found the simplest obstruction to the existence of met-
rics of positive scalar curvature on compact simply connected manifolds.
We will describe the part of Lichnerowicz’s theorem that applies to four-
manifolds later. Building upon the work of Lichnerowicz, Gromov and
Lawson were able to obtain a relatively complete description of which com-
pact simply connected manifolds of dimension > 5 admit metrics of positive
scalar curvature. (See [25], Corollary 4.5, page 301.)

As Witten noticed, a compact four-manifold with positive scalar cur-
vature must have vanishing Seiberg-Witten invariants. Thus there is an
obstruction to the existence of metrics of positive scalar curvature which
depends on the differentiable structure of the four-manifold, not just its
topological type. The Seiberg-Witten invariants show that many compact
four-manifolds (including all compact algebraic surfaces of “general type”)
do not admit metrics of positive scalar curvature.

A third application of the Seiberg-Witten equations is to symplectic
geometry. Indeed, Taubes [38] was able to identify the Seiberg-Witten
invariants of a compact symplectic four-manifold with Gromov invariants—
as a consequence he obtained an existence theorem for “pseudoholomorphic
curves” in such manifolds.

The rapidity with which these new results have been obtained suggests
that the Seiberg-Witten equations may have yet further applications to the
geometry of four-manifolds. This is now an area of intensive research.

The differential geometry needed to study the Seiberg-Witten equations
is the geometry of spin and spin® structures. Until recently, these topics
appeared unfamiliar and strange to many geometers, although spinors have
long been regarded as important in physics. The tools needed to study spin
and spin® structures are the same standard tools needed by all geometers
and topologists: vector bundles, connections, characteristic classes and so
forth. We will begin by reviewing some of this necessary background.
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1.2 What is a vector bundle?

Roughly speaking, a vector bundle is a family of vector spaces, parametrized
by a smooth manifold M.

How does one construct such a family of vector spaces? Suppose first
that the ground field is the reals and the vector spaces are to be of dimension
m, all isomorphic to R™. In this case, one starts with an open covering
{Uq : @ € A} of M and for each o, 3 € A, smooth transition functions

gap : Ua NUg — GL(m,R) = {m x m nonsingular real matrices},
which satisfy the “cocycle condition”
9apB * 98y = Gar on UaNUgNU,.
Note that
9aa Yo = Yaps = Yaa =1 on Uy,
and hence the cocycle condition implies that
9aB 9o = Gaa =1 on U NUg.

Let E denote the set of all triples (o, p,v) € A x M x R™ such that

p € Uy. Define an equivalence relation ~ on E by

(o, p,v) ~ (B, q,w) & p=q€UsnNUp, v=gas(p)w.

Denote the equivalence class of («, p, v) by [a, p, v] and the set of equivalence
classes by E. Define a projection map

m:E—- M by 7([e, p,v]) = p.
Let U, = 7~1(U,) and define a bijection

Yo - ﬁa — Uy X R™ by Wlia([a,p, U]) - (p’ 1)).

There is a unique manifold structure on E which makes each 1, into a
diffeomorphism. With respect to this manifold structure, the projection =
is a smooth submersion.

A real vector bundle of rank m over M is a pair (E,7) constructed as
above for some choice of open cover {U, : « € A} of M and some collection
gap of transition functions which satisfy the cocycle condition. The fiber
of this vector bundle over p € M is E, = 7 !(p), the preimage of p under
the projection. It has the structure of an m-dimensional real vector space.
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When are two such vector bundles to be regarded as isomorphic? To
answer this question, we need the notion of morphism within the category
of vector bundles over M. A wector bundle morphism from (FEi,7;) to
(E2,m2) over M is a smooth map f : E; — E; which takes the fiber (Ey),
of Ey over p to the fiber (E), of E5 over p and restricts to a linear map on
fibers, fp : (E1)p — (E2)p. An invertible vector bundle morphism is called
a vector bundle isomorphism over M. Let Vect“,fl(M ) denote the space of
isomorphism classes of real vector bundles of rank m over M.

The reader has no doubt encountered many examples of vector bundles
in courses on differential geometry: the tangent bundle "M, the cotangent
bundle T* M, the k-th exterior power A¥T* M of the cotangent bundle, and
other tensor bundles. Given two vector bundles E; and E5 over M, one can
form their direct sum E; & E3, their tensor product F; ® Fs,, the bundle
Hom(FE, E3), and so forth. One can also construct the dual bundle EY
whose fibers are the dual spaces to the fibers of F;. The construction of
such vector bundles is described in detail in §3 of [30].

Complex vector bundles are defined in a similar way. The only difference
is that in the complex case the transition functions take their values in the
group GL(m,C) of m x m complex matrices instead of GL(m,R), and F
is replaced by the set of triples (o, p,v) € A x M x C™ such that p € U,.
The construction described above then gives a pair (F,7) in which the
fiber 7~!(p) has the structure of a complex vector space of dimension m.
Let VectS (M) denote the space of isomorphism classes of complex vector
bundles of rank m over M.

A complex vector bundle of rank one is also called a complez line bundle.
The space of complex line bundles forms an abelian group under the tensor
product operation ®. We will sometimes write

L"=LQL® ---QL (m times).

Note that if
Gap - U, N Ug — GL(l,C)

are the transition functions for L, then the transition functions for L™ are
simply g75.

In addition to real and complex vector bundles, one can define quater-
nionic vector bundles, vector bundles over the quaternions. Quaternions
were first described by William R. Hamilton in 1853. In modern notation,
a quaternion is simply a 2 x 2 matrix of the form

Q = al + bi+ cj + dk,
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where a, b, ¢ and d are real numbers, and

=09 =09 a-(00) -6 5

It is readily checked that the sum of two quaternions or the product of two
quarternions is again a quaternion. Quaternion multiplication is bilinear
over the reals; thus it is determined by the multiplication table for its basis

{1,i,j;k}:

1 i j k

1 1 i j k
i i -1 -k j
j 3 k =1 =i
kK k —j i -1

Thus of two possible conventions, we choose the one which induces the
negative of the cross product on the three-plane of “imaginary quaternions”
spanned by i, j and k.

Alternatively, we can think of quaternions as 2 x 2 complex matrices of

the form
w -z
z w )’

where z and w are complex numbers. Note that since
det Q = |2|? + |w|?,

a nonzero quaternion () possesses a multiplicative inverse.

We let H denote the space of quaternions. It is a skew field, satisfying
all the axioms of a field except for commutativity of multiplication. Let
G L(m,H) denote the group of nonsingular m x m matrices with quaternion
entries.

To define a quaternionic vector bundle of rank m, we simply require
that the transition functions g.s take their values in GL(m,H). We let
VectE,E(M ) denote the space of isomorphism classes of quaternionic vector
bundles of rank m over M.

Note that GL(m,H) is a subgroup of GL(2m,C), which in turn is a sub-
group of GL(4m,R). A quaternionic vector bundle of rank m can thought
of as a real vector bundle of rank 4m whose transition functions g,z take
their values in GL(m,H) C GL(4m,R). More generally, if G is a Lie sub-
group of GL(m,R), a G-vector bundle is a rank m vector bundle whose
transition functions take their values in G.
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Let us suppose, for example, that G is the orthogonal group O(m) c
GL(m,R). In this case the transition functions of a G-vector bundle pre-
serve the usual dot product on R™. Thus the bundle E inherits a fiber
metric, a smooth function which assigns to each p € M an inner product

(, )p: Epx Ep > R.

If G is the special orthogonal group SO(n), a G-vector bundle possesses
not only a fiber metric, but also an orientation.

Similarly, if G is the unitary group U(m) C GL(m,C) C GL(2m,R),
a G-vector bundle is a complex vector bundle of rank m together with a
Hermitian metric, a smooth function which assigns to each p € M a map

(, )p: EpxE, > C
which satisfies the axioms
1. (v, w)p is complex linear in v and conjugate linear in w,
2. (v, w), = (w,v),
3. (v,v), > 0, with equality holding only if v = 0.
A section of a vector bundle (F,7) is a smooth map
c:M—- FE such that m o o = identity.

If o € I'(E), the restriction of o to U, can be written in the form

Rm
o(p) = [a, p,0a(D)], where o4 :Uy, — ¢{ C™
Hm
is a smooth map. The vector-valued functions o, are called the local rep-
resentatives of o and they are related to each other by the formula

0o = Gapop on UamUB. (12)

In the real or complex case, the set I'(E) of sections of E is a real
or complex vector space respectively, and also a module over the space of
smooth functions on M. In the quaternionic case, we need to be careful
since quaternionic multiplication is not commutative. In this case, (1.2)
shows that sections of F' can be multiplied on the right by quaternions.

Example. We consider complex line bundles over the Riemann sphere S2,
regarded as the one-point compactification of the complex numbers, S? =
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CuU{oo}. Give C the standard complex coordinate z and let Uy = S? —{oo},
Uso = S% — {0}. For each integer n, define

1
9000 : Us NUy — GL(1,C) by  gooo(2) = -

This choice of transition function defines a complex line bundle over S?
which we denote by H™. A section of H™ is represented by maps

0o : Uy — C, Ooo : Uy = C

such that 1
O = —O0y, on UooﬂU()
zn.
It can be proven that any complex line bundle over S? is isomorphic to H"
for some n € Z.
In particular, the cotangent bundle to S? must be isomorphic to H™ for
some choice of n. A section ¢ of the cotangent bundle restricts to opdz on
Uy for some choice of complex valued function oy. Over U,,, we can use

the coordinate w = 1/z, and write 0 = —0oodw. Since dw = —(1/2)2%dz,
0odz = —0sodw = O = 2200,

and hence n = —2. In other words, T*S? = H~2. Similarly, T'S? = H2.

In a similar way, we can construct all quaternionic line bundles over S*.
In this case, we regard S* as the one-point compactification of the space of
quaternions, S* = HU {oo}. Let Uy = H, Uy, = S* — {0}, and define

1
As n ranges over the integers, we obtain all quaternionic line bundles over
St

How can we prove the claims made in the preceding paragraphs? Proofs

can be based upon theorems from differential topology which classify vector
bundles over manifolds. Here are two of the key results:

9oo0 : U NUy = GL(1,H) by  gooo(Q)

Classification Theorem for Complex Line Bundles. If M is a smooth
manifold, there is a bijection

Vect$ (M) = H2(M; 7).
This theorem will be proven in §1.6. The theorem implies that

Vect$(S2) = H?(S%,Z) = Z,
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and we will see that H™ corresponds to m € Z under the isomorphism. A
argument similar to that for complex line bundles could be used to prove:

Classification Theorem for Quaternionic Line Bundles. If M is a
smooth manifold of dimension < 4, there is a bijection

Vect (M) =~ HY(M;Z).

1.3 What is a connection?

In contrast to differential topology, differential geometry is concerned with
“geometric structures” on manifolds and vector bundles. One such struc-
ture is a connection. Evidence of the importance of connections is provided
by the numerous definitions of connection which have been proposed.

A definition frequently used by differential geometers goes like this. Let

X(M) = {vector fields on M}, I'(E) = {smooth sections of E}.

Definition 1. A connection on a vector bundle E is a map
VA x(M) x T(E) - I'(E)
which satisfies the following axioms (where V4o = VA(X, 0)):
V%(fo+71)=(Xf)o+ fVso + Vir, (1.3)

Vixiyo = fV%0 + Vo (1.4)

Here f is a real-valued function if F is a real vector bundle, a complex-
valued function if F is a complex vector bundle.

It is customary to regard V4o as the covariant derivative of o in the
direction of X.
Given a connection V4 in the sense of Definition 1, we can define a map

da :T(E) — T(T*M ® E) = I (Hom(T M, E))

by
da(o)(X) = V)A(o.

Then d 4 satisfies a second definition:

Definition 2. A connection on a vector bundle E is a map

da :T(E) > T(T*M @ E)
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which satisfies the following axiom:
da(fo+7)=(df) ®0 + fdao +dar. (1:5)

Definition 2 is more frequently used in gauge theory, but in our presen-
tation both definitions will be important. Note that Definition 2 is a little
more economical in that one need only remember one axiom instead of two.
Moreover, Definition 2 makes clear the analogy between a connection and
the exterior derivative.

The simplest example of a connection occurs on the bundle £ = M xR™,
the trivial real vector bundle of rank m over M. A section of this bundle
can be identified with a vector-valued map

ol
e
0= M — R™.

O.m

We can use the exterior derivative to define the “trivial” flat connection d 4
on E:

ol dol!
o de™

More generally, given an m x m matrix

m
m

)
of real-valued one-forms, we can define a connection d4 by
ol do? wi - W} ol
da : = ; e : <ol s ; : i (1_6)
m m m
o do W] - wr o

We can write this last equation in a more abbreviated fashion:
dao = do + wo,

matrix multiplication being understood in the last term. Indeed, the axiom
(1.5) can be verified directly, using the familiar properties of the exterior
derivative:

da(fo+7)=d(fo+7)+w(fo+T)



