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PREFACE TO THE
THIRD EDITION

The purpose of the third edition of this book is to give a sound and self-con-
tained (in the sense that the necessary probability theory is included) introduction
to classical or mainstream statistical theory. It is not a statistical-methods-
cookbook, nor a compendium of statistical theories, nor is it a mathematics
book. The book is intended to be a textbook, aimed for use in the traditional
full-year upper-division undergraduate course in probability and statistics,
or for use as a text in a course designed for first-year graduate students. The
latter course is often a “service course,” offered to a variety of disciplines.

No previous course in probability or statistics is needed in order to study
the book. The mathematical preparation required is the conventional full-year
calculus course which includes series expansion, multiple integration, and par-
tial differentiation. Linear algebra is not required. An attempt has been
made to talk to the reader. Also, we have retained the approach of presenting
the theory with some connection to practical problems. The book is not mathe-
matically rigorous. Proofs, and even exact statements of results, are often not
given. Instead, we have tried to impart a ““feel ” for the theory.

The book is designed to be used in either the quarter system or the semester
system. In a quarter system, Chaps. I through V could be covered in the first



xiv PREFACE TO THE THIRD EDITION

quarter, Chaps. VI through part of VIII the second quarter, and the rest of the
book the third quarter. In a semester system, Chaps. I through VI could be
covered the first semester and the remaining chapters the second semester.
Chapter VI is a ““ bridging >’ chapter; it can be considered to be a part of “ proba-
bility ”’ or a part of ““statistics.”” Several sections or subsections can be omitted
without disrupting the continuity of presentation. For example, any of the
following could be omitted: Subsec. 4.5 of Chap. 11; Subsecs., 2.6, 3.5, 4.2, and
4.3 of Chap. I11; Subsec. 5.3 of Chap. VI; Subsecs. 2.3, 3.4, 4.3 and Secs. 6
through 9 of Chap. VII; Secs. 5 and 6 of Chap. VIII; Secs. 6 and 7 of Chap. IX;
and all or part of Chaps. X and XI. Subsection 5.3 of Chap VI on extreme-value
theory is somewhat more difficult than the rest of that chapter. In Chap. VIJ,
Subsec. 7.1 on Bayes estimation can be taught without Subsec. 3.4 on loss and
risk functions but Subsec. 7.2 cannot. Parts of Sec. 8 of Chap. VII utilize matrix
notation. The many problems are intended to be essential for learning the
material in the book. Some of the more difficult problems have been starred.

ALEXANDER M. MOOD
FRANKLIN A. GRAYBILL
DUANE C. BOES



EXCERPTS FROM THE FIRST
AND SECOND EDITION PREFACES

This book developed from a set of notes which I prepared in 1945. At that time
there was no modern text available specifically designed for beginning students
of mathematical statistics. Since then the situation has been relieved consider-
ably, and had I known in advance what books were in the making it is likely
that I should not have embarked on this volume. However, it seemed suffi-
ciently different from other presentations to give prospective teachers and stu-
dents a useful alternative choice.

The aforementioned notes were used as text material for three years at Iowa
State College in a course offered to senior and first-year graduate students.
The only prerequisite for the course was one year of calculus, and this require-
ment indicates the level of the book. (The calculus class at Iowa State met four
hours per week and included good coverage of Taylor series, partial differentia-
tion, and multiple integration.) No previous knowledge of statistics is assumed.

This is a statistics book, not a mathematics book, as any mathematician
will readily see. Little mathematical rigor is to be found in the derivations
simply because it would be boring and largely a waste of time at this level. Of
course rigorous thinking is quite essential to good statistics, and I have been at
some pains to make a show of rigor and to instill an appreciation for rigor by
pointing out various pitfalls of loose arguments.
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While this text is primarily concerned with the theory of statistics, full
cognizance has been taken of those students who fear that a moment may be
wasted in mathematical frivolity. All new subjects are supplied with a little
scenery from practical affairs, and, more important, a serious effort has been
made in the problems to illustrate the variety of ways in which the theory may
be applied.

The problems are an essential part of the book. They range from simple
numerical examples to theorems needed in subsequent chapters. They include
important subjects which could easily take precedence over material in the text;
the relegation of subjects to problems was based rather on the feasibility of such
a procedure than on the priority of the subject. For example, the matter of
correlation is dealt with almost entirely in the problems. It seemed to me in-
efficient to cover multivariate situations twice in detail, i.e., with the regression
model and with the correlation model. The emphasis in the text proper is on
the more general regression model.

The author of a textbook is indebted to practically everyone who has
touched the field, and I here bow to all statisticians. However, in giving credit
to contributors one must draw the line somewhere, and I have simplified matters
by drawing it very high; only the most eminent contributors are mentioned in
the book.

I am indebted to Catherine Thompson and Maxine Merrington, and to
E. S. Pearson, editor of Biometrika, for permission to include Tables IIT and V,
which are abridged versions of tables published in Biometrika. 1 am also in-
debted to Professors R. A. Fisher and Frank Yates, and to Messrs. Oliver and
Boyd, Ltd., Edinburgh, for permission to reprint Table IV from their book
* Statistical Tables for Use in Biological, Agricultural and Medical Research.”

Since the first edition of this book was published in 1950 many new statis-
tical techniques have been made available and many techniques that were only in
the domain of the mathematical statistician are now useful and demanded by
the applied statistician. To include some of this material we have had to elim-
inate other material, else the book would have come to resemble a compendium.
The general approach of presenting the theory with some connection to prac-
tical problems apparently contributed significantly to the success of the first
edition and we have tried to maintain that feature in the present edition.
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PROBABILITY

1 INTRODUCTION AND SUMMARY

The purpose of this chapter is to define probability and discuss some of its prop-
erties. Section 2 is a brief essay on some of the different meanings that have
been attached to probability and may be omitted by those who are interested
only in mathematical (axiomatic) probability, which is defined in Sec. 3 and
used throughout the remainder of the text. Section 3 is subdivided into six
subsections. The first, Subsec. 3.1, discusses the concept of probability models.
It provides a real-world setting for the eventual mathematical definition of
probability. A review of some of the set theoretical concepts that are relevant
to probability is given in Subsec. 3.2. Sample space and event space are
defined in Subsec. 3.3. Subsection 3.4 commences with a recall of the definition
of a function. Such a definition is useful since many of the words to be defined
in this and coming chapters (e.g., probability, random variable, distribution,
etc.) are defined as particular functions. The indicator function, to be used
extensively in later chapters, is defined here. The probability axioms are pre-
sented, and the probability function is defined. Several properties of this prob-
ability function are stated. The culmination of this subsection is the definition
of a probability space. Subsection 3.5 is devoted to examples of probabilities
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defined on finite sample spaces. The related concepts of independence of
events and conditional probability are discussed in the sixth and final subsection.
Bayes’ theorem, the multiplication rule, and the theorem of total probabilities
are proved or derived, and examples of each are given.

Of the three main sections included in this chapter, only Sec. 3, which is
by far the longest, is vital. The definitions of probability, probability space,
conditional probability, and independence, along with familiarity with the
properties of probability, conditional and unconditional and related formulas,
are the essence of this chapter. This chapter is a background chapter; it intro-
duces the language of probability to be used in developing distribution theory,
which is the backbone of the theory of statistics.

2 KINDS OF PROBABILITY

2.1 Introduction

One of the fundamental tools of statistics is probability, which had its formal
beginnings with games of chance in the seventeenth century.

Games of chance, as the name implies, include such actions as spinning a
roulette wheel, throwing dice, tossing a coin, drawing a card, etc., in which the
outcome of a trial is uncertain. However, it is recognized that even though the
outcome of any particular trial may be uncertain, there is a predictable long-
term outcome. It is known, for example, that in many throws of an ideal
(balanced, symmetrical) coin about one-half of the trials will result in heads.
It is this long-term, predictable regularity that enables gaming houses to engage
in the business.

A similar type of uncertainty and long-term regularity often occurs in
experimental science. For example, in the science of genetics it is uncertain
whether an offspring will be male or female, but in the long run it is known
approximately what percent of offspring will be male and what percent will be
female. A life insurance company cannot predict which persons in the United
States will die at age 50, but it can predict quite satisfactorily how many people
in the United States will die at that age.

First we shall discuss the classical, or a priori, theory of probability; then
we shall discuss the frequency theory. Development of the axiomatic approach
will be deferred until Sec. 3.



