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Preface

This volume is a collection of review articles on
recent investigations of chemistry and structure at
interfaces. The collection stems from a three-day
symposium entitled "Photoprocesses at Solid Surfaces” held
at the National Meeting of the American Chemical Society
in Seattle, Washington in March, 1983. One of the
highlights of the symposium was a session on new laser and
optical techniques at which each of the contributing
authors was an invited speaker. There was a keen interest
in this session for obvious reasons. Techniques based
on stimulus and response involving photons are applicable
to the study of surfaces in high pressure and condensed
phase environments, including many of great technological
importance such as catalysts, electronic materials,
lubricants, surfactants, and biological cells and
membranes. At the meeting, the authors described new and
promising, but in some cases immature, methods.
Considerable progress has been made since that time and
the current works review these areas in depth. In most
cases, efforts through mid-1985 are included in the
reviews.

Each of the chapters gives an overview of the
experimental techniques employed, however the emphasis is
on what has been learned about surface chemistry and
bonding. The first three chapters describe investigations
of interactions at gas—-solid interfaces. These
investigations supplement conventional ultra-high-vacuum
surface science studies, providing new information on
bonding and configurations in the near surface region and
on the dynamics and kinetics of molecular interactions at
the surface. The next three chapters describe
investigations of interactions at liquid-solid interfaces.
These studies break new ground in the study of bonding,
molecular orientation, electron transfer and chemical
interactions at surfaces in the presence of fluid
overlayers.

We have made no attempt to provide a complete survey of
works in this field. Rather, we have tried to provide an
in depth sampling of selected efforts. We believe the
studies reviewed here exemplify the rapidly expanding
effort in the application of laser and optical methods to
the study of interfacial processes.
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l. EXAMINATION OF THE GAS—SOLID AND METAL-SUPPORT
INTERFACES IN SUPPORTED CATALYSTS BY NEAR EDGE

X—-RAY ABSORPTION SPECTROSCOPY

J. A. Horsley

Corporate Research Science Laboratories
Exxon Research and Engineering Company
Route 22 East, Annandale, New Jersey 08801

F. W. Lytle

The Boeing Company
Seattle, Washington 98124

l.1. Introduction

Catalysts consisting of small metal particles dispersed
on a high—-surface—area oxide support are of great
technological importance and scientific interest. The
local coordination geometry and the electronic structure
of the metal particles, which can be as small as 10 A in
diameter, may differ significantly from the coordination
geometry and electronic structure of the bulk metal. 1In
order to understand the catalytic properties of these
materials, it is necessary to determine exactly how the
metal particles differ from the bulk metal. In some cases
the properties of the metal particles may be modified by
interaction with the support, so information on the metal-
support interface is also required. Chemisorption may
also cause changes in the particle structure. X-ray
absorption spectroscopy is an ideal technique for
investigating the particle structure of these metals
because it is element-specific and it is sensitive to the
local environment around the absorbing atom.

With the availability of synchrotron radiation, X-ray
absorption spectroscopy has been increasingly used to
obtain information on the local structure of materials.
Extended X-ray Absorption Fine Structure (EXAFS) is now

© 1986 VCH Publishers, Inc. 1



2 J. A. HORSLEY AND F. W. LYLE

established as an important tool for investigating the
local structure of complex disordered systems, including
catalysts [1]. The region of the X-ray absorption
spectrum used in EXAFS lies far above (> 100 eV) the
absorption edge of the excited atom. However, the near
edge region, within 50 eV of the absorption edge, can also
provide information, largely complementary to the
information that is obtained from EXAFS. In the case of
catalysts, an analysis of the near edge region has given
information about changes in the electronic structure of
the catalyst caused by the support or by chemisorption and
has also been used to determine the local structure around
a particular site. Near edge spectroscopy of this region
has been referred to by a number of different acronyms
including NEXAFS (Near Edge X-ray Absorption Fine
Structure) and XANES (X-ray Absorption Near Edge
Structure).

In the EXAFS region of the X-ray absorption spectrum,
the emitted electron has a high kinetic energy and is
weakly scattered by the surrounding atoms, whereas in the
near edge region the kinetic energy of the emitted
electron is fairly low and the scattering much stronger.
The amplitude of the intensity oscillations in the
absorption spectrum in the near edge region is therefore
much larger than in the EXAFS region. Near edge
structure, however, may be more difficult to interpret
than EXAFS because multiple scattering of the emitted
electron becomes more important as the kinetic energy of
the electron is reduced. The standard EXAFS single
scattering formalism has recently been extended to include
these multiple scattering effects [2,3], thus allowing
this formalism to be used to analyze the near edge
region. Multiple scattering theory has for some time been
used to carry out molecular orbital calculations on
molecules and clusters with the Scattered Wave Xa (SW-Xa)
method [4]. The same technique can also be used to
calculate continuum states, and Xa calculations have quite
accurately reproduced the near edge structure of small
molecules [5] and ions [6]. A somewhat different
formalism for multiple scattering in molecules and
clusters, based on Low Energy Electron Diffraction (LEED)
theory, has been developed by Durham et al. [7,8] and has
been used to analyze the near edge structure of metals [9],
compounds [10] and adsorbates [11]. The near edge
structure in metals has been shown to reflect the local
density of states obtained in band structure calculations
in the region above the Fermi level [12].



1. NEAR EDGE X-RAY ADSORPTION SPECTROSCOPY

A number of different theoretical techniques therefore
are now available for the analysis of near edge
structure. Multiple scattering effects, while
complicating the theory, can provide important information
on the local structure around the excited atom. We will
now review what has been learned about catalysts from an
analysis of their near edge structure with the aid of
multiple scattering theory.

l.2. Electronic Structure of Catalysts from L Edge
Resonances

At the L2 and L3 edges of transition metals and their
compounds, there are usually found fairly sharp, intense
resonances sometimes known as "white lines.” The
resonances at the L edges of osmium metal are shown in
Figure 1l.1. Since transitions at the L, and Lg edges must
originate in the 2p1/2 and 2p /2 core orbitals, the upper
state must have d or s orbital character. Calculations
have shown that transitions from the 2p core orbital to s
valence orbitals are much weaker than the corresponding
transitions to d orbitals [13], and can effectively be
ignored. The L edge resonance lines therefore correspond
to transitions to empty states in the d band in metals and
to transitions to exciton levels having some d character
in compounds. There was found to be an approximate
correlation between the intensity of the L, edge resonance
in a series of metals and the d orbital occupancy obtained
from band structure calculations [l14]. This led to the
suggestion that the white line intensities could be used
to follow changes in the electronic structure of
catalysts.

There have been a number of attempts to obtain an
accurate analysis of the relationship between d orbital
occupancy and white line intensity. Lytle et al. [15]
measured the area of the Lj edge resonance in the
absorption spectra of a series of platinum and iridium
compounds. They subtracted the L, edge area in a pure
metal from the area of the L, resonance in the given
compound and were able to correlate the difference in area
with the amount of charge transferred from the d orbitals
on the metal atom to the ligands in the various
compounds. Estimates of the extent of charge transfer
were obtained from the metal and ligand
electronegativities using Pauling's empirical relationship
between ionic character and electronegativity [16]. A



