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Preface

This is the second of two volumes that are intended to provide college and uni-
versity students with a sensible continuation of the modern approach to mathe-
matics that is being introduced in most elementary and secondary schools, with
more emphasis than in the past placed on an understanding of fundamental
concepts. Certain advanced topics in algebra and trigonometry, along with
analytic geometry and calculus, are unified into a sequential exposition that
eliminates much unnecessary duplication and is conducive to an efficient de-
velopment and use of ideas and techniques. Fundamental concepts are discussed
in a reasonably rigorous fashion, with adequate emphasis on important skills,
and without an excess of sophistication. Many applications of mathematics
have been included, and they have frequently been made the motivation for the
introduction of mathematical concepts. An intuitive discussion often precedes
the formal treatment of a new idea.

Although the books were written with students in engineering and the sciences
in mind, they are also well suited for a good liberal arts course in mathematics.
The exposition has, in the main, been kept at a level that has proved to be
reasonable for the average student. However, a number of optional sections,
problems, and proofs, each of which is marked by a star and may be omitted
without loss of continuity, have been included as a challenge to the better
students.

Important definitions, axioms, and theorems are clearly labeled, and a con-
scientious effort has been made to utilize each new idea and notation as fre-
quently as possible in order to promote its intelligent use by the student. New
materials and new points of view are not introduced merely for the sake of
novelty, but are brought in only if they make a genuine contribution to the
understanding that can be imparted to the reader.

There are several features of particular interest that we have found helpful
in providing the student with a deeper understanding of elementary mathe-
matical analysis, as well as a better background for mathematics beyond the
sophomore level. First, there is the development and consistent use of the
neighborhood concept in the treatment of limits. This approach gives the student
a better intuitive feeling for the meaning of a limit than the more usual formal
-6 attack. The second significant feature is the introduction and use of matrices
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for the solution of systems of linear equations and for the discussion of linear
transformations in reducing a quadratic polynomial to a canonical form, as
well as the application of these ideas to the solution of simple systems of dif-
ferential equations. A third important feature is the use of vector algebra for
the discussion of geometric ideas relating to the line and the plane in three-
dimensional space, and the use of vector calculus for the development of a
number of basic notions relating to curves and surfaces as well as to velocity
and acceleration. The introduction and application of some elementary ideas in
the calculus of complex-valued functions motivates and simplifies the use of the
exponential function with an imaginary exponent.

The material in these books has been taught quite successfully for the past
three years—first in the form of notes and then in an offset preliminary edition—
to ordinary freshman and sophomore classes. The point of view of the exposi-
tion, the organization, and the development of the mathematical ideas, the new
topics, and the intuitive development that often precedes a more rigorous formal
discussion, have all been enthusiastically received by both faculty and students.
We believe that this approach has enabled students to attain a desirable level
of mathematical maturity in a shorter time than they could have with the more
traditional approaches.

The first seven chapters of Volume I are concerned with basic ideas and the
development of a consistent language and terminology for the remainder of the
book. A good modern course in analytic geometry and calculus can be based
on Chapters 4 and 5, the first three sections of Chapter 6, and Chapters 8 to 15
of Volume I, plus Chapters 1 to 11 of Volume II. Chapters 12 and 13 of Volume
II contain adequate material for a short course in differential equations. Chap-
ter 14 consists of an elementary treatment of the Laplace transformation, and
Chapter 15 is a brief introduction to probability.

The material in Volume I can easily be covered in two five-semester-hour
courses in the freshman year. The material in the first thirteen of the fifteen
chapters of Volume II can be covered (with minor omissions) in two four-
semester-hour courses in the sophomore year. It is, however, quite possible for a
well-prepared class to complete both volumes in the two-year sequence by
omitting the more elementary portions of Volume 1. In order to establish the
language and point of view for such students, it is advisable to study the concept
of a set and the set notation in Sections 1.6, 1.7, and 1.8. The summary of
Chapter 2 gives the symbols that are consistently used to denote certain special
sets of numbers. Basic work on inequalities occurs in Sections 3.8 and 3.9.
Chapters 4, 5, and 6, which contain the introductory work in analytic geometry
and the discussion of relations and functions, should be taken in more or less
detail, depending on the preparation of the class, Chapter 7, which is concerned
with basic trigonometry, may be omitted for students with good high school
preparation in this subject. Not more than two or three weeks is needed to cover
the preceding topics, so that students with adequate high school background
are then able to begin the serious work on limits and continuity in Chapter 8.
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Chapter 1 Coordinate
Geometry

11 SETS OF POINTS DETERMINED BY
GEOMETRIC CONDITIONS

The first organization of geometric concepts into an axiomatic system was
given by Euclid about 300 B.c. Euclid’s geometry was a study of geometric
figures based on certain axioms suggested by physical considerations. In the
early 1600’s, the French mathematician René Descartes (1596-1650) introduced
the concept of a coordinate system by means of which he was able to translate
geometric problems into an algebraic language. The resulting union of algebra
and geometry, now known as analytic or coordinate geometry, proved to be so
powerful that it opened the door to an amazing new era of mathematics.

The fundamental ideas of coordinate geometry, such as the representation of
points in a plane by ordered pairs of real numbers and the representation of a
curve by an algebraic equation, were introduced in Chapter 4 of Volume I.
By means of these representations, we were able to study the straight line in
considerable detail and, in particular, we saw how to specify the direction of a
straight line by means of the slope or by means of direction numbers. We
were also able to analyze properties of curves, to find symmetries, asymptotes,
and so on; and with the aid of the calculus, to describe other salient features
of a curve. The importance and value of these ideas in the analysis of many
physical problems can hardly be overestimated.

In order to see further how these concepts are used, we shall investigate
additional simple applications to geometric problems. The set of all ordered
pairs of real numbers is called a space, and a particular ordered pair in the set
is called a point in the space. The distance between two points (x1, y1) and (x2, y2)
was defined in Chapter 4 of Volume I as

d = [(x1 — x2?2 + (1 — y2)?]'2

The expression for d is called the metric of the space, and the space is called a
euclidean metric space of two dimensions. This space is the familiar xy-plane.

Suppose we wish to describe analytically a set of points each of which is located
twice as far from the x-axis as from the y-axis. If the distance of an arbitrary
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point of the set from the y-axis is denoted by di, then the distance of the point
from the x-axis is 2d; (see Figure 1.1a). In analytic form, we have

di = |x| and 2d; = |y,
so that the equations
2x =y and 2x = —y
describe the set of points, since the coordinates of each point in the set satisfy

one or the other of these equations.
The next example illustrates another simple geometric problem.

Example 1.1a. Find an analytic description for the set of points located so that the
distance of each from the point (1, 0) is equal to its distance from the line x = 0.

y y
d
E— &
e -2,
| /
| //
124,
| ! /{‘z
! /
| /
| /
L v
0 x 0 1 X
FIGURE 1.1a FIGURE 1.1b

As Figure 1.1b shows, d represents the distance of the point (x, y) from the y-axis,
and d- its distance from the point (1, 0). The condition to be satisfied is that d; = d>.
From

di= x| and d> = [(x = 12 + 77,
we get
x| = [(x — 1)2 4 y2]1/2,
x2 = (x — 12 + »
This equation reduces to
y2=2x—1.

In other words, every point (x, y) that satisfies the given geometric condition must
have coordinates that satisfy the above algebraic condition. But can we be sure that
every point whose coordinates satisfy the equation also satisfies the geometric condi-
tion? In this case, the desired assurance can be obtained by working backward from
the final equation to obtain the result that d; = d>. Thus, if

y2=2x—-1,
Y4+ x2—2x+4+1=x2
Y2+ (x— 1) =x2
Since the left side of this equation is the square of the distance 4> of the point (x, y)

from the point (1, 0), and the right side is the square of the distance d, of the point
from the y-axis, we see that di = d> as required.

then

or
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The next example shows that it is sometimes necessary to adjoin an inequality
to the equation in order to describe the geometric conditions completely.

Example 1.1b. Find an equation to describe the set of points {(x, y)} in the first
quadrant such that the product of the coordinates of each point is always 6.

It is easy to write that xy = 6. Unfortunately, this equation is satisfied by the co-
ordinates of points in the third quadrant, such as (—2, —3), which we wish to exclude.
Hence, the equation xy = 6 alone is not adequate. Instead we must write

xy = 6, x>0
to describe the given set of points.

Example 1.1c. Find an equation for the set of all points located at a distance of
5 units from the point (3, 4).
Let P(x, y) be a typical point of the set (see Figure 1.1c). The distance of this point
from (3,4) is d = [(x — 3)? 4+ (¥ — 4)?]'/2, which must equal 5. Hence,
5=[(x—324(y — 2112
or
x2 — 6x + y2 — 8y = 0.

Example 1.1d. Find an equation for the set of points such that the product of the
slopes of the two lines joining each point of the set to the points (0, 2) and (0, —2) is 1.

|
|
|
|
|
|
|
1
3

1 6 X (o) —27
FIGURE 1.1c¢ FIGURE 1.1d

Referring to Figure 1.1d, where (x, y) is supposed to be a point in the given set, we
have, for the slope of L,

m=Y=%  xx0,

and, for the slope of L,

B x # 0.
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Since the given condition is mm2 = 1, we get
y=2 (y_+_2 -1
x x ’
y2—xt=4, x#0.

The final equation is that of a hyperbola with its vertices at (0, 2) and (0, —2), but
the vertices themselves are not in the given set of points.

or

The next example illustrates another technique that is helpful in determining
equations for sets of points.

Example 1.1e. Find an equation for the set of midpoints of the chords drawn from
the origin to the points of the curve determined by y? = x.

y A(u, v) y=x
2+ 22 = x
M(x, y)
0 2 4 6 g x
_2_.

FIGURE 1.1e

Figure 1.1e shows the graph of y?> = x and a typical chord. Let the point A(x, v)
be a point of the curve y2 = x, and let the point M(x, y) be the midpoint of the chord
OA. The coordinates of the point 4 on the given curve are denoted by « and v in order
to distinguish them from the coordinates of a point M(x, y) on the required curve.

It is now necessary to find a connection between the coordinates (#, ») and (x, y).
In this case the desired relationship is easily obtained, since it is known that M is the
midpoint of the chord. Hence,

x=3%u and y = 1o,
or
2x =u, 2y =no.
Since u and v satisfy the equation »? = u, we get
(2y)2 = ZX,
or
22 = x

as an equation of the set of points.

The preceding example illustrates a device that is frequently convenient in
analytic geometry—namely, giving a point on an unknown curve the general
coordinates (x, y) and then finding a relationship between these coordinates
and the coordinates of a point (1, v) on a known curve,
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Example 1.1f. Find an equation for the set of all points located 4 units farther from
(4,0) than from the line x = 2.

yr=12(x — 1)

3 = 20—4x 6}

- /
2 / \
/ 3
1 ! \= 1
-2 0 12 4 | 6 x
\ //
\\ /
—2L /
\ >
\ e
\| 7

—6f

FIGURE 1.1f

If P(x, y) is a typical element of the set (Figure 1.1f), then the distances of P from
the line and from the point are, respectively,
di=V(x—22 and d»=V(x — 4?2+ ).

The problem states d> = di + 4. However, di = 0 and d> = 0, so that care must
be used in performing algebraic operations on this equation. Keep in mind that the
distances may not be negative and that we must use

Vix — 27 = x—2 forx=2,
&x=2 2—x forx<2.

Thus, the problem must be considered in two parts. For x = 2, we have

X—244=V(x—a+
(x+2)2 = (x — 42+ 2
y2=12(x — 1).
For x < 2, we have
2—x+4=V(x—42+)?
6 —x?=(x— 49+ )2
y2 = 20 — 4x.
Accordingly, we may write for the required set of points:

2={12(x—1), x=2,
45— x), x<2.

The graph consists of the heavy solid lines in Figure 1.1f,



