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Preface

This book is intended as an introduction to programming in C++ for the
programmer or student already familiar with Pascal. It uses an evolu-
tionary teaching process with Pascal as a starting point and C++ as a
destination. The book is written to allow the reader to stop and use the
language facilities up to that point in the text.

Pascal is the major teaching language for beginning computer sci-
ence students. Designed by Niklaus Wirth in 1970, it is a small, power-
ful language, popular with both the academic community and the
personal computer community. Many efficient and fast compilers exist
for it, which indeed was one of its design goals. Pascal lacks some key
features that limit its use in the professional community, where C is the
dominant language.

C++, invented at Bell Labs by Bjarne Stroustrup in the mid-1980s, is
a powerful modern successor language to C. C++ adds to C the concept
of class, a mechanism for providing user-defined types also called
abstract data types. It supports object-oriented programming by these
means and by providing inheritance and run-time type binding. C is the
present; C++ is the future.

By carefully developing working C++ programs, using the method of
dissection, this book presents a simple and thorough introduction to
the programming process in C++. Dissection is a technique for explain-
ing new elements in a program that the student is seeing for the first
time. It highlights key points in the many examples of working code
that are used to teach by example.

This book is intended for use in a first course in programming in
C++. The audience is expected to know Pascal or have enough program-
ming experience to follow this tutorial. It can be used as a supplemen-
tary text in an advanced programming course, data structures course,
software methodology course, comparative language course, or other
courses where the instructor wants C++ to be the language of choice.
Each chapter presents a number of carefully explained programs. Many
programs and functions are dissected.
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All the major pieces of code were tested. A consistent and proper
coding style is adopted from the beginning. The style standard used is
one chosen by professionals in the C++ community.

Pascal is a language of roughly the same size and utility as C. For
the Pascal programmer who wants C experience, this book could be
used in conjunction with A Book on C, Second Edition by Al Kelley and
Ira Pohl (Redwood City, California: Benjamin/Cummings, 1990). As a
package, the two books offer an integrated treatment of the C and C++
programming languages and their use that is unavailable elsewhere.

Each chapter contains:

Dissections. A program particularly illustrative of the chapter’s
themes is analyzed by dissection. Dissection is similar to a structured
walk-through of the code. Its intention is to explain to the reader newly
encountered programming elements and idioms.

Summary. A succinct list of points covered in the chapter are reiter-
ated as helpful review.

Exercises. The exercises test the student’s knowledge of the lan-
guage. Many exercises are intended to be done interactively while read-
ing the text. This encourages self-paced instruction by the reader. The
exercises also frequently extend the reader’s knowledge to an advanced
area of use.

The book incorporates:

An Evolutionary Approach. The Pascal programmer is introduced
to equivalent concepts in the C++ programming language. By learning
how individual elements of a Pascal program translate into C++, the
Pascal programmer can immediately gain a facility with the C++ pro-
gramming language. Chapter 1, “An Overview of C++ and Object-Ori-
ented Programming,” provides an introduction to C++’s use as an
object-oriented programming language. Chapter 2, “Native Types and
Statements,” shows the parallels between programming in Pascal and
C++ with regard to data types, expressions, and simple statements.
Chapter 3, “Functions and Pointers,” continues with similarities
between functions and complex data types . The middle chapters show
how classes work. Classes are the basis for abstract data types and
object-oriented programming. Again, the student starts from the per-
spective of Pascal and moves to C++. The later chapters give advanced
details of the use of inheritance, templates, and exceptions. At any
point in the text the programmer can stop and use the new material.

Teaching by Example. The book is a tutorial that stresses examples
of working code. Right from the start the student is introduced to full
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working programs. An interactive environment is assumed. Exercises
are integrated with the examples to encourage experimentation. Exces-
sive detail is avoided in explaining the larger elements of writing work-
ing code. Each chapter has several important example programs. Major
elements of these programs are explained by dissection.

Data Structures in C++. The text emphasizes many of the standard
data structures from computer science. Stacks, safe arrays, dynamically
allocated multidimensional arrays, lists, trees, and strings are all imple-
mented. Exercises extend the student’s understanding of how to imple-
ment and use these structures. Implementation is consistent with an
abstract data type approach to software.

Object-Oriented Programming. The reader is led gradually to the
object-oriented style. Chapter 1, “An Overview of C++ and Object-Ori-
ented Programming,” discusses how the Pascal programmer can benefit
in important ways from a switch to C++ and object-oriented program-
ming (OOP). Object-oriented concepts are defined, and the way in which
these concepts are supported by C++ is introduced. Chapter 4,
“Classes,” introduces classes, which are the basic mechanism for pro-
ducing modular programs and implementing abstract data types. Class
variables are the objects being manipulated. Chapter 7, “Inheritance,”
develops inheritance and virtual functions, two key elements in this
paradigm. Chapter 10, “OOP Using C++,” discusses OOP and the Pla-
tonic programming philosophy. This book develops in the programmer
an appreciation of this point of view.

Turbo Pascal 7.0 Equivalence. Where appropriate, C++ code is
given with equivalent Pascal code. This gives the experienced Pascal
programmer immediate access to idiomatic C++ code. Wirth’s Pascal
has largely been superceded by commercially developed, extended Pas-
cals that have many additional features, such as modules and OO exten-
sions. Borland International’s Turbo Pascal 7.0 has many OO features,
and is among the most widely used. Where Turbo Pascal is specifically
mentioned, we show equivalent code for OO features of C++.

ANSI C++ language and iostream.h. For an existing, widely used
language, C++ continues to change at a rapid pace. This book is based
on the most recent standard: the ANSI C++ Committee language docu-
ments. A succinct informal language reference is provided in Appendix
D, “Language Guide.” Chief additions include templates and exception
handling. The examples use the iostream.h 1/0 library. This has
replaced the older stream.h used in the first edition and stdio.h used in
the C community. Use of the iostream.h library is described in Appendix
E, “Input/Output.”
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Industry- and Course-Tested. It is the basis of many on-site profes-
sional training courses given by the author, who has used its contents
to train professionals and students in various forums since 1986. The
various changes in the new edition are course-tested, and reflect con-
siderable teaching and consulting experience by the author. In its first
edition, the book won a UNIXWORLD commendation for the profes-
sional programmer migrating to C++.
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