G++ FOR PASGAL
PROGRAMMERS

SECOND EDITION

THIS IS A

USED BOOK

This book was originally distribu-
ted as a sample copy by the pub-

lisher, for academic review. It was

(then) purchased by a used book
dealer and resold as used. This
allows you a substantial savings.

All the chapters and pages are =
included. s

C++ for Pascal Programmers
Second Edition

Ira Pohl

University of California, Santa Cruz

The Benjamin/Cummings Publishing Company, Inc.
Redwood City, California - Menlo Park, California
Reading, Massachusetts - New York - Don Mills, Ontario
Wokingham, UK. - Amsterdam - Bonn -Sydney
Singapore - Tokyo - Madrid - San Juan

Acquisitions Editor: J. Carter Shanklin Production Editor: Ray Kanarr

Executive Editor: Dan Joraanstad Composition: Debra Dolsberry
Editorial Assistant: Melissa Standen Proofreader: Joe Ruddick
Copy Editor: Elizabeth Gehrman Cover Design: Yvo Riezebos

Text Design Consultant: Lisa Jahred
Cover Illustration: Joseph Maas, Paragon?

FrameMaker® is a trademark of Frame Technology Corporation. The
camera-ready copy was prepared on a PC with FrameMaker®.

©1995 by The Benjamin/Cummings Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, or
stored in a database or retrieval system, or transmitted, in any form or
by any means, electronic, mechanical, photocopying, recording, or oth-
erwise, without the prior written permission of the publisher. Printed in
the United States of America. Published simultaneously in Canada.

The programs and the applications presented in this book have been
included for their instructional value. They have been tested with care
but are not guaranteed for any particular purpose. The publisher does
not offer any warranties or representations, nor does it accept any lia-
bilities with respect to the programs or applications.

Library of Congress Cataloging-in-Publication Data
Pohl, Ira

C++ for Pascal Programmers / Ira Pohl -- 2nd ed.

p. cm.

Includes index

ISBN 0-8053-3158-1

1. C++ (Computer language program) I. Title.
QA76.73.C153P65 1994
005.13'3—dc20 94-24584

CIP

ISBN 0-8053-3158-1

123456789 10-MA-99 98 97 96 95 94

The Benjamin/Cummings Publishing Company, Inc.
390 Bridge Parkway
Redwood City, CA 94065

C++ for Pascal Programmers
Second Edition

About the Author

Ira Pohl, Ph.D., is a professor of Computer
and Information Sciences at the University of
California, Santa Cruz. He has two decades of
experience as a software methodologist and is
an international authority on C and C++ pro-
gramming. His teaching and research interests
setede et teetit®ge and programming
lang@ages RréfessorPohl has lectured exten-
swvery at WHC.. Berkeldy ik Courant Institute,
Edinburgh University, Sfanford, the Vrije
Univeryity in Amsserdam, and Auckland Uni-

ersitysimt New Zcaland. Hg is the author of the
bast-seling:Q@higat-Lliguted Programming Us-
ing C++, and C++ for C Programmers, Sec-
ond Edition, and coauthor, with Al Kelley, of
A Book on C: Programming in C, Second
Edition; and C By Dissection, Second Edition.
When not programming, he enjoys riding
bicycles in Aptos, California, with his wife
Debra and daughter Laura.

Preface

This book is intended as an introduction to programming in C++ for the
programmer or student already familiar with Pascal. It uses an evolu-
tionary teaching process with Pascal as a starting point and C++ as a
destination. The book is written to allow the reader to stop and use the
language facilities up to that point in the text.

Pascal is the major teaching language for beginning computer sci-
ence students. Designed by Niklaus Wirth in 1970, it is a small, power-
ful language, popular with both the academic community and the
personal computer community. Many efficient and fast compilers exist
for it, which indeed was one of its design goals. Pascal lacks some key
features that limit its use in the professional community, where C is the
dominant language.

C++, invented at Bell Labs by Bjarne Stroustrup in the mid-1980s, is
a powerful modern successor language to C. C++ adds to C the concept
of class, a mechanism for providing user-defined types also called
abstract data types. It supports object-oriented programming by these
means and by providing inheritance and run-time type binding. C is the
present; C++ is the future.

By carefully developing working C++ programs, using the method of
dissection, this book presents a simple and thorough introduction to
the programming process in C++. Dissection is a technique for explain-
ing new elements in a program that the student is seeing for the first
time. It highlights key points in the many examples of working code
that are used to teach by example.

This book is intended for use in a first course in programming in
C++. The audience is expected to know Pascal or have enough program-
ming experience to follow this tutorial. It can be used as a supplemen-
tary text in an advanced programming course, data structures course,
software methodology course, comparative language course, or other
courses where the instructor wants C++ to be the language of choice.
Each chapter presents a number of carefully explained programs. Many
programs and functions are dissected.

Vi Preface

All the major pieces of code were tested. A consistent and proper
coding style is adopted from the beginning. The style standard used is
one chosen by professionals in the C++ community.

Pascal is a language of roughly the same size and utility as C. For
the Pascal programmer who wants C experience, this book could be
used in conjunction with A Book on C, Second Edition by Al Kelley and
Ira Pohl (Redwood City, California: Benjamin/Cummings, 1990). As a
package, the two books offer an integrated treatment of the C and C++
programming languages and their use that is unavailable elsewhere.

Each chapter contains:

Dissections. A program particularly illustrative of the chapter’s
themes is analyzed by dissection. Dissection is similar to a structured
walk-through of the code. Its intention is to explain to the reader newly
encountered programming elements and idioms.

Summary. A succinct list of points covered in the chapter are reiter-
ated as helpful review.

Exercises. The exercises test the student’s knowledge of the lan-
guage. Many exercises are intended to be done interactively while read-
ing the text. This encourages self-paced instruction by the reader. The
exercises also frequently extend the reader’s knowledge to an advanced
area of use.

The book incorporates:

An Evolutionary Approach. The Pascal programmer is introduced
to equivalent concepts in the C++ programming language. By learning
how individual elements of a Pascal program translate into C++, the
Pascal programmer can immediately gain a facility with the C++ pro-
gramming language. Chapter 1, “An Overview of C++ and Object-Ori-
ented Programming,” provides an introduction to C++’s use as an
object-oriented programming language. Chapter 2, “Native Types and
Statements,” shows the parallels between programming in Pascal and
C++ with regard to data types, expressions, and simple statements.
Chapter 3, “Functions and Pointers,” continues with similarities
between functions and complex data types . The middle chapters show
how classes work. Classes are the basis for abstract data types and
object-oriented programming. Again, the student starts from the per-
spective of Pascal and moves to C++. The later chapters give advanced
details of the use of inheritance, templates, and exceptions. At any
point in the text the programmer can stop and use the new material.

Teaching by Example. The book is a tutorial that stresses examples
of working code. Right from the start the student is introduced to full

Preface vii

working programs. An interactive environment is assumed. Exercises
are integrated with the examples to encourage experimentation. Exces-
sive detail is avoided in explaining the larger elements of writing work-
ing code. Each chapter has several important example programs. Major
elements of these programs are explained by dissection.

Data Structures in C++. The text emphasizes many of the standard
data structures from computer science. Stacks, safe arrays, dynamically
allocated multidimensional arrays, lists, trees, and strings are all imple-
mented. Exercises extend the student’s understanding of how to imple-
ment and use these structures. Implementation is consistent with an
abstract data type approach to software.

Object-Oriented Programming. The reader is led gradually to the
object-oriented style. Chapter 1, “An Overview of C++ and Object-Ori-
ented Programming,” discusses how the Pascal programmer can benefit
in important ways from a switch to C++ and object-oriented program-
ming (OOP). Object-oriented concepts are defined, and the way in which
these concepts are supported by C++ is introduced. Chapter 4,
“Classes,” introduces classes, which are the basic mechanism for pro-
ducing modular programs and implementing abstract data types. Class
variables are the objects being manipulated. Chapter 7, “Inheritance,”
develops inheritance and virtual functions, two key elements in this
paradigm. Chapter 10, “OOP Using C++,” discusses OOP and the Pla-
tonic programming philosophy. This book develops in the programmer
an appreciation of this point of view.

Turbo Pascal 7.0 Equivalence. Where appropriate, C++ code is
given with equivalent Pascal code. This gives the experienced Pascal
programmer immediate access to idiomatic C++ code. Wirth’s Pascal
has largely been superceded by commercially developed, extended Pas-
cals that have many additional features, such as modules and OO exten-
sions. Borland International’s Turbo Pascal 7.0 has many OO features,
and is among the most widely used. Where Turbo Pascal is specifically
mentioned, we show equivalent code for OO features of C++.

ANSI C++ language and iostream.h. For an existing, widely used
language, C++ continues to change at a rapid pace. This book is based
on the most recent standard: the ANSI C++ Committee language docu-
ments. A succinct informal language reference is provided in Appendix
D, “Language Guide.” Chief additions include templates and exception
handling. The examples use the iostream.h 1/0 library. This has
replaced the older stream.h used in the first edition and stdio.h used in
the C community. Use of the iostream.h library is described in Appendix
E, “Input/Output.”

viii Preface

Industry- and Course-Tested. It is the basis of many on-site profes-
sional training courses given by the author, who has used its contents
to train professionals and students in various forums since 1986. The
various changes in the new edition are course-tested, and reflect con-
siderable teaching and consulting experience by the author. In its first
edition, the book won a UNIXWORLD commendation for the profes-
sional programmer migrating to C++.

Acknowledgments

My special thanks go to my wife, Debra Dolsberry, who encouraged me
throughout this project. She acted as book designer and technical edi-
tor for this second edition. She developed appropriate formats and
style sheets in FrameMaker 4.0 and guided the transition process from
the first edition that was developed in troff. She also implemented and
tested all major pieces of code. Her careful implementations of the code
and exercises often led to important improvements. Stephen Clamage
of TauMetric Corporation provided wonderfully insightful comments
on language detail. Other reviewers who specifically commented on this
edition were: Douglas Campbell, Brigham Young University; Blayne May-
field, Oklahoma State University; and Henry Ruston, Polytechnic Univer-
sity. William Engles of the University of Wisconsin described an
improved shuffling routine for the poker example.

The first edition had help, inspiration, and encouragement from,
Nan Borreson, Borland International; Skona Brittain; Al Conrad; Steve
Demurjian; Samuel Druker, Zortech Limited; Robert Durling; Bruce
Eckel; Daniel Edelson; Gene Fisher; Robert Hansen, Lattice, Incorpo-
rated; John Hardin, Hewlett-Packard, Incorporated; Al Kelley; Jim
Kempf, Sun Microsystems, Incorporated; Ellen Mickanin; Laura Pohl,
Cottage Consultants; and Linda Werner. The first edition editors were
Alan Apt and Mark McCormick. The second edition was developed with
J. Carter Shanklin. Finally, I thank Bjarne Stroustrup for inventing such
a powerful language and encouraging others to help teach it.

Ira Pohl
University of California, Santa Cruz

Contents

Chapter 1
An Overview of C++ and Object-Oriented
Programming
1.1 Object-Oriented Programming
1.2 Why C++ Is a Better C
1.3 Why Switch to C++?
1.4 Pascal as a Starting Point
1.5 Classes and Abstract Data Types
1.6 Overloading
1.7 Constructors and Destructors
1.8 Inheritance
1.9 Polymorphism
1.10 Templates
1.11 C++ Exceptions
1.12 Benefits of Object-Oriented Programming
1.13 References
Chapter 2
Native Types and Statements
2.1 Program Elements
2.1.1 Comments
2.1.2 Keywords
2.1.3 Identifiers
2.1.4 Literals
2.1.5 Operators and Punctuators
2.2 Input/Output
2.3 Program Structure
2.4 Simple Types
2.4.1 |Initialization
2.5 The Traditional Conversions
2.6 Enumeration Types
2.7 Expressions

27
28
28
29
29
30
32
32
34
37
38
40
44
45

X Contents

2.8

2.9
2.10

Chapter 3

1 Assignment and Expressions

2 The Compound Statement

3 Theif and the if-else Statements
.4 The while Statement

5 The for Statement

6 The do Statement

2.8.7 Transfer Statements

Summary

Exercises

Functions and Pointers

3.1

wwwwwww
coNOYUVT DA WN

3.9

w ww
N — O

WwWwwwwww
P P
LNV bW

Functions

3.1.1 Function Invocation

Function Definition

The return Statement

Function Prototypes

Default Arguments

Overloading Functions

Inlining

Scope and Storage Class

3.8.1 The Storage Class auto

2 The Storage Class register

3 The Storage Class extern

4 The Storage Class static

5 Linkage Mysteries

ointer Types

3.9.1 Addressing and Dereferencing
3.9.2 Simulating Call-by-Reference
Reference Declarations and Call-by-Reference
The Uses of void

Arrays and Pointers

3.12.1 Subscripting

3.12.2 Initialization

The Relationship between Arrays and Pointers
Passing Arrays to Functions

Strings: A Kernel Language ADT
Multidimensional Arrays

Free Store Operators new and delete
Summary

Exercises

3.8.
3.8.
3.8.
3.8.
Poi

50
51
52
52
54
54
56
57
61
62

71
72
72
73
74
76
79
80
81
82
84
85
85
87
88
89
90
90
92
96
98
99

100
100
102
103
105
105
108
111

Contents Xi

Chapter 4

Classes 119
4.1 The Aggregate Type struct 120
4.2 Structure Pointer Operator 122
4.2.1 typedef and Casting 123
4.3 A Linked List 123

4.3.1 Dynamic Storage Allocation for a
Linked List 125
4.3.2 Counting and Lookup 130
4.4 An Example: Stack 131
4.5 Unions 135
4.6 Bit Fields 138
4.7 Member Functions 140
4.8 Visibility private and pubTic 143
4.9 Classes 144
4.10 static Member 146
4.11 Class Scope 147
4.11.1 Scope Resolution Operator :: 147
4.11.2 Nested Classes 148
.1 An Example: Flushing 149
4.13 Key Differences Between C++ and Pascal 154
4.14 Pragmatics 155
4.15 Turbo Pascal Equivalence 156
4.16 Summary 159
4.17 Exercises 160

Chapter 5

Constructors and Destructors 165
5.1 Classes with Constructors 166
5.1.1 The Default Constructor 168
5.2 Constructing a Dynamically Sized Stack 169
5.2.1 The Copy Constructor 170
5.2.2 Constructor Initializer 171
5.3 Classes with Destructors 172
5.4 The this Pointer 173
5.5 static and const Member Functions 174
5.6 An Example: Dynamically Allocated Strings 178
5.7 A Class vect 182
5.8 Members That Are Class Types 185
5.9 An Example: A Singly Linked List 186
5.10 Two-Dimensional Arrays 191
5.11 Strings Using Reference Semantics 193

xii Contents

5.12 No Constructor, Copy Constructor, and Other

Mysteries 195
5.12.1 Destructor Details 197
5.12.2 Constructors as Conversions 197
13 Pragmatics 199
5.14 Turbo Pascal Equivalence 199
5.15 Summary 202
16 Exercises 204
Chapter 6
Operator Overloading and Conversions 211
6.1 The Traditional Conversions 212
6.2 ADT Conversions 214
6.3 Overloading and Function Selection 216
6.4 Friend Functions 220
6.5 Overloading Operators 223
6.6 Unary Operator Overloading 224
6.7 Binary Operator Overloading 227
6.8 Overloading Assignment and Subscripting
Operators 229
6.9 Signature Matching 233
6.10 Pragmatics 236
6.11 Summary 237
6.12 Exercises 239
Chapter 7
Inheritance 247
7.1 A Derived Class 248
7.2 Typing Conversions and Visibility 250
7.3 Code Reuse: Dynamic Array Bounds 253
7.4 Code Reuse: A Binary Tree Class 256
7.5 Virtual Functions 260
7.6 Abstract Base Classes 264
7.7 Multiple Inheritance 270
7.8 Detailed C++ Considerations 275
7.9 Pragmatics 276
7.10 Turbo Pascal Equivalence 278
7.11 Summary 280
7.12 Exercises 282

Contents xiii

Chapter 8
Templates 289
8.1 Template Class Stack 289
8.2 Function Templates 291
8.2.1 Signature Matching and Overloading 293
8.3 Class Templates 294
8.3.1 Friends 294
8.3.2 Static Members 295
8.3.3 Class Template Arguments 295
8.4 Parameterizing the Class vect 296
8.5 Parameterized Binary Search Tree 300
8.6 Inheritance 304
8.7 Pragmatics 306
8.8 Summary 307
8.9 Exercises 309
Chapter 9
Exceptions 313
9.1 Using assert.h 314
9.2 C++ Exceptions 315
9.3 Throwing Exceptions 316
9.4 Try Blocks 319
9.5 Handlers 320
9.6 Exception Specification 320
9.7 terminate() and unexpected() 321
9.8 Example Exception Code 321
9.9 Pragmatics 324
9.10 Summary 325
9.11 Exercises 326
Chapter 10
OOP Using C++ 329
10.1 OOP Language Requirements 330
10.2 ADTs in Non-OOP Languages 331
10.3 Clients and Manufacturers 332
10.4 Reuse and Inheritance 334
10.5 Polymorphism 334
10.6 Language Complexity 336
10.7 C++ OOP Bandwagon 337
10.8 Platonism: Tabula Rasa Design 338
10.9 Design Principles 340
10.10 Last Words 341
10.11 References 342
10.12 Summary 343

Xiv Contents

10.13 Exercises

Appendix A
ASCII Character Codes

Appendix B
Operator Precedence and Associativity

Appendix C

Turbo Pascal and C++

C.1 Program Structure
Identifiers
Simple Data Types
Statements
Expressions
Procedures and Functions
Structured Types
Units and Objects
C.8.1 Constructors and Destructors
C.8.2 Inheritance

0
N

NnO0NNN
coNOUVT AW

Appendix D

Language Guide

D.1 Lexical Elements

D.1.1 Comments

D.1.2 Identifiers

D.1.3 Keywords

Constants

Declarations and Scope Rules
Linkage Rules

Types

Conversion Rules

Expressions and Operators

D.7.1 sizeof Expressions

D.7.2 Autoincrement and Autodecrement
Expressions

7.3 Arithmetic Expressions

.7.4 Relational, Equality, and Logical
Expressions

5 Assignment Expressions

6 Comma Expressions

.7 Conditional Expressions

8 Bit Manipulation Expressions

o000 DU
N swN

345

347

349

351
351
354
355
355
357
357
359
360
362
364

369
369
370
370
371
372
374
377
379
381
384
384

384
385

385
387
388
388
389

D.8

D.9

D.11

Contents

9 Address and Indirection Expressions
.10 new and delete Expressions

.11 Placement Syntax and Overloading
.12 Error Condmons

.

1 Expression Statements

2 The Compound Statement

3 The if and if-else Statements
.4 The while Statement

5 The for Statement

6 The do Statement

D.8.7 Transfer Statements

D.8.8 The Declaration Statement

UUDDDUYDUDDD
PoP®RoE NNNNN

D.9.1 Constructors and Destructors
D.9.2 Member Functions

D.9.3 The this Pointer

D.9.4 static and const Member Functions
D.9.5 Inheritance

D.9.6 Multiple Inheritance

D.9.7 Constructor Invocation

D.9.8 Abstract Base Classes

D.9.9 Pointer to Class Member
Functions

D.10.1 Prototypes

D.10.2 Overloading

0.3 Call-by-Reference

.4 Inline

.5 Default Arguments

.6 Friend Functions

.7 Operator Overloading

10.8 Virtual Functions

D.10.9 Type-Safe Linkage

Templates

D.11.1 Function Template

D.11.2 Friends

D.11.3 Static Members

D.11.4 New Rules: Arguments and Specialization
Exceptions

D.12.1 Throwing Exceptions

D.12.2 Try Blocks

D.12.3 Handlers

D.12.4 Exception Specification

D.12.5 terminate() and unexpected()

OO OO0

D.1
D.1
D.1
D.1
D.1
D.

XV

389
390
391

393
394
394
395
395
395
396
397
398
398
402
403
403
405
405
406
407
409
410
411

411

412
412
413
415
416
416
417
418
419
420
421

422
423
424
424
425
425
427
428
428
429

Xvi Contents

D.13 Caution and Compatibility
D.13.1 Nested Class Declarations
D.13.2 Type Compatibilities
D.13.3 Miscellaneous

D.14 New and Proposed Features
D.14.1 Types bool and wchar_t
D.14.2 Namespaces
D.14.3 Run-Time Type Identification
D.14.4 Mutable
D.14.5 Casts
D.14.6 Miscellaneous

D.15 Style Examples and Pragmatics
D.15.1 Class Definition Style

Appendix E

Input/Output

E.1 The Output Class ostream

E.2 Formatted Output and iomanip.h

E.3 User-Defined Types: Output

E.4 The Input Class istream

E.5 Files

E.6 The Functions and Macros In ctype.h

E.7 Using Stream States

E.8 Mixing I/0O Libraries

Index

429
429
430
430
431
432
432
434
435
435
437
437
439

441
442
443
445
447
449
453
454
457

459

