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Digital CMOS interface circuit for current and capacitance sensing

Ashok Srivastava*

Department of Electrical and Computer Engineering
Louisiana State University Baton Rouge, LA USA 70803-5901

ABSTRACT

A CMOS digital interface chip has been designed and implemented in standard 1.5 pm n-well CMOS technology for
detection of current and capacitance variations across a sensing element. An on-chip digitally variable sensor element
simulating current and capacitance is monolithically integrated with the readout circuitry. The chip gives an 8-bit digital
output and can detect a minimum current and capacitance up to 150 HA and 2.5 fF, respectively.

Keywords: CMOS interface circuit, digital CMOS readout, ADC, DAC, sensors, CMOS mixed-signal circuit

1. INTRODUCTION

Current (I), voltage (V), capacitance (C) and charge (Q) are the essential sensing parameters which are required to be
detected with increased sensitivity across a sensor which outputs one of these parameters. On chip integration of both
the sensor element and the readout electronics on a common substrate such as silicon has allowed detecting weak
signals in noisy and harsh environments and reduces system size. At present most of the sensors are made in MEMS
process and readout electronics is in CMOS. Integration of MEMS and CMOS electronics on a common substrate has
lead to the development of smart sensors'™ for chemical, biological and physical detection. The sensor output is an
analog signal and processing analog signal for digital readout provides convenience in data processing, storage and
instrumentation.

In the past, we have integrated gas sensors with CMOS devices for sensing hydrocarbon-based gases*®, reported design
of a CMOS readout circuit for integration with capacitive sensors’, and an ultra low-power operational amplifier CMOS
chip for monolithic integration with neural microprobes®. We have also reported a CMOS circuit design for a novel
scheme of converting a multiple-valued output voltage from a sensor into a binary-coded output for signal processing °.
In the present work, we describe design and implementation of an 8-bit digital CMOS readout chip for detecting current
and capacitance variations from sensors. Digital readout is designed in standard 1.5 um n-well CMOS technology using
the successive approximation method'® and consists of an 8-bit shift register, SR module, 8-bit DAC and a comparator.
To simulate experimental conditions of the sensor output, we have designed digitally programmable on-chip variable
current and capacitor network and integrated with the readout circuit. In the following, we describe the design and

experimental results for on-chip simulated sensing.

2. DIGITAL CMOS READOUT CHIP DESIGN

Figure 1 shows the block diagram of a current and capacitance sensing digital readout circuit. The circuit of Fig. 1
utilizes an on-chip digitally programmable variable current and capacitance. The signal is detected by the corresponding
sensor circuit, which is selected by the sensor selection control circuit. Digital readout is obtained after analog-to-digital
conversion.

*ashok @ece.lsu.edu; phone 1 225 578-5622; fax 1 225 578-5200
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Proceedings of SPIE Vol. 5389 (SPIE, Bellingham, WA, 2004) - 0277-786X/04/$15 - doi: 10.1117/12.540114



2

Digitally | Current Sensor

Programmable Circuit
Variable Current
\
Successive -
Sensor Selection v s "~ Digital
Control Circuit APPOXITHLON =2 Readout
A/D Converter
A
Digitally .
Programmable  [—>{ o FEC
Variable Capacitance

Figure 1: Block diagram of a current and capacitance sensing digital readout electronics.
2.1 Current sensing using digitally programmable variable current

Current sensing part of the digital readout of Fig. | is divided in two parts: current sensor circuit, which is basically an
amplifier and digitally programmable current circuit for an on-chip simulated variable current. Figure 2 shows the
amplifier circuit designed for current detection. In the circuit of Fig. 2, R_Sense is the sense resistor connected in series
to the ground path. I_Sense is the sense current to be measured. V, and V, characterize the inverting and non-inverting
inputs to the amplifier, respectively. Sense current (I_Sense) flows to the ground through the sense resistor, R_Sense
and develops a voltage V,, proportional to the varying sense current. The amplifier output voltage (Vo) is proportional
to the I_Sense.

R,

R;
MW .
g VOU[
+
Vo
Vo
»— M-
= R S + <<
P i Sense Current (I_Sense)

Figure 2: An amplifier circuit for current detection.

The circuit of Fig. 2 is designed to measure current as low as 150 pA of I_Sense (min) with R_Sense of nearly 17 kQ.
The method of current detection of Fig. 2 can also be used for voltage sensing and corresponding digital readout.

2.2 Digitally programmable variable current

On-chip digitally programmable variable current is achieved using a binary weighted unit MOSFET array as shown in
Fig. 3. The unit MOSFET is designed for a W/L ratio of 1. The supply voltages, Vpp and Vg are 3V and 0V,
respectively. The drain current from a unit size transistor is 150 pA. Control signals applied to the gates in the

Proc. of SPIE Vol. 5389



MOSFET array are obtained from a 4-bit binary synchronous counter as shown in Fig. 4. The counter switches the gates
of appropriate MOSFETSs in the MOSFET array to the reference voltage, Vrer by a 2 to 1 CMOS transmission gate
multiplexer. The reference voltage, Vgrer is 3V. MOSFET array along with the base unit MOSFET is capable of
producing 2* (16) different equally incremented currents, which form the on-chip simulated sense current, I_Sense of
the current sensor circuit.

Qe M
Q 2M )
Q, ||J V|S|S_l UJ4M bout
[N —
o

Y

Figure 3: A binary weighted unit MOSFET array. Note: Qo - Q3: LSB to MSB outputs of a 4 - bit synchronous binary counter, M:
Unit MOSFET (W/L = 1).

VREF
Capacitive
Array Switching 2XIMUX > Qpuc
Clock N — 5
. ~ >
xIMUX —> Q
] o
l_i_\ —
Reset Qo Ry,
S |Reset L] zamux —> Q
4-Bit +— ) 5
Synchronous qi — 2
Capacitive Binary ) L | ZxIMUX >
Array Counter Counter Q2 D, i
Clock - || aamux [ G
@

Figure 4: Block diagram of a MOSFET array controlled by a 4-bit synchronous binary counter.
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2.3 Capacitance sensing using digitally programmable variable capacitance

The design of the circuit is divided in two parts: the analog part associated with the capacitive sensing and the digitally
programmable on-chip capacitance. Figure 5 shows a typical block diagram of an analog circuit to measure the sensor
capacitance Cs. In Fig. 5, Cr and Cc are the reference capacitor and the coupling capacitor, respectively' !. Cg and Cs are
charged to reference voltage, Vggr using complementary clock pulses, phil and phi2, respectively. The difference
between the charges in Cg and Cs is applied to the inverting input of the amplifier, which produces an amplified output,
V,ou- The analog part of the sensing circuit is designed to operate from a voltage source of 3V.

Phi2

oFie

—O VOUT
+
Cs = Sense Capacitor Phil
Cr = Reference Capacitor .- .-- —_— -
Cc = Coupling Capacitor
* Phi2
VREr
GND crjTsssssassssssmsenenene

Figure 5: Analog circuit for capacitance sensing.

2.4 Digitally programmable variable capacitance

The sensing signal to the differential amplifier in Fig. 5 is produced by an array of sensing capacitors. A simple
technique of putting an array of sense capacitors on the chip was realized by using a 4-bit synchronous binary counter’.
Figure 6 shows the block diagram a capacitor array. In order to obtain 2* (16) distinct capacitive values, a base
capacitance (Cs_Base) and four binary weighted capacitors (1C, 2C, 4C and 8C) are needed where C= C_Resolution.
Thus, for instance, in a 2.5 {F resolution, 1C = 2.5 fF is as shown in Fig. 6. A 4-bit synchronous binary counter is
needed to select the appropriate weighted capacitor in parallel with the base capacitor, which is switched to the Vggr by
a 2 to 1 CMOS transmission gate multiplexer as shown in Fig. 7. The binary counter output is synchronized by the
clock pulse phi2 through AND gates so that any switching will occur only when Cg is switched so that it is connected to
ground. The counter can be initialized to 0000 at any time in order have only the Cs_Base switched. The reset input is
active low and is pulled up by an active load in order to be functional even if that chip pin is floating. The speed of the
capacitive change can be adjusted with the capacitive sensor array counter clock. It will be convenient to adjust it to a
slow clock when taking measurement.

The capacitors were designed using poly-1 and poly-2 levels of the standard 1.5 um n-well CMOS process.
Approximately 160 pm? capacitor areas yielded a 40 fF capacitor value. A base capacitor of 40 fF was used in all three
cases. The Cc and Cg for the 2.5 fF resolutions were chosen to be 50fF and 75fF, respectively. These latter values were
determined by trial and error so that the measurable output voltage level could be attained. Three 25 fF capacitors were
connected in parallel to realize Cr and a special capacitor of 50 fF was designed for Cc as shown in Fig. 8

Proc. of SPIE Vol. 5389



Cg_Base 80fF ©

4()fF+ 40ﬂT:||-‘
O Cs
e 25w o—— -
40fF 40fF 40fF 40fF 40fF 40fF 40fF 40fF
40fF 40fF 40fF 40fF 40fF 40fF 40fF 40fF
2c s o— A HH—
40fF 40fF 40fF 40fF 40fF 40fF 40fF 40fF
sc 10 o ] F——— ————| —
40fF 40fF 40fF 40fF
8C 20fF O—|— —
40fF 40fF
Figure 6: Design of a sense capacitor array for a 2.5fF resolution.
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Figure 7: Block diagram of an on-chip simulated variable capacitor array controlled by a 4-bit synchronous binary counter.
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Figure 8: Design of reference and coupling capacitors.
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2.5 Sensor selection control circuit (SSCL)

Analog output from the sensor circuit is fed to an analog-to-digital converter (ADC) through a sensor selection control
(SSCL) circuit. The SSCL circuit is implemented using a CMOS transmission gate multiplexer and is controlled by an
external input Select. The SSCL circuit chooses between sensors based on input Select and connects the output of sensor
to an ADC for the digital output. Select-High emulates the current sensor. Select-Low emulates the capacitance sensor.

2.6 Readout circuit design

Digital readout is achieved with an ADC designed using a successive approximation technique as shown in Fig. 9. The
circuit of ADC operates as follows. The start pulse sets a “1” in F/F1, and additionally drives F/F9 to the “1” state. Then
the MSB analog switch is driven by F/F9 to connect the reference voltage, Vggr to the terminal of the capacitor array of
digital-to-analog converter (DAC). The output of the DAC (Voa), which is equivalent to the weighted MSB, is then
compared with the input analog voltage (Vs by the comparator. After some delay time, the comparator output appears
at the output of AND gate G1. The comparator generates a logic “1” output if the DAC output (Vpa) is greater than Vis
or a logic “0” if the reverse is true. When the positive half cycle of clock signal occurs, gate G1 changes to the “1” state
if the comparator output is HIGH or to the “0” state if the comparator output is LOW. G2 is already in the “1” state and
changes to either “1” or “0” accordingly. At the end of the positive half-cycle clock signal, gates G1 and G2 return to
the “0” state. Transition from “1” to “0” at the gate G2 resets the F/F9 to the “0” state thereby driving the analog switch
(AS1) to remove the reference voltage and connect ground to the MSB terminal of the DAC capacitor array. F/F9
remains in “1” state if there is no transition from “1” to “0” at the gate G2 at the end of positive half cycle. Next clock
pulse shifts “1” in F/F1 to F/F2, thereby enabling AND gate G3 also F/F1’s transition from “1” to “0” sets logic “1” in
F/F10 and the weighing process of successive approximation logic repeats. This process is repeated until each bit is
tried. After the LSB has been tried the digital word in the flip-flops (F/F9, F/F10, ... ,F/F16) is equivalent to Vi, with a
precision of £1/2 in 255. All 8-bits of the ADC are tried and settled after eight clock pulses.
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Figure 9: Digital readout using a successive approximation ADC technique.

Digital readout circuit design of Fig. 9 is divided in four main blocks: 8-bit shift register, SR module, 8-bit DAC and

comparator. In the following, design and function of individual modules are described with the help of associated
control circuitry.
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2.6.1 Eight-bit shift register design

The 8-bit shift register is designed using negative edge-triggered D flip-flops. Flip-flops are connected in a ring fashion
such that the output of one flip-flop drives the next flip-flop. Start pulse sets a “1” in F/F1 and also drives F/F2,
F/F3,....,F/F8 to “0” state. This gives 10000000 outputs from the shift register. Negative edge of clock pulse shifts flip-
flop state “1” by one position towards the LSB. After the first clock pulse output of shift register will be 01000000. This
will be repeated as long as the clock is available and the logic “1” keeps shifting by one position at the negative edge of
the clock. Shift register can be reset anytime with the start pulse.

2.6.2 SR module design

SR module, which is primarily responsible for implementing the successive approximation logic of ADC is designed
using a simple technique of coupling two synchronous SR flip-flops. Circuits describing coupling of SR flip-flops are
shown in Fig. 10. SR module is implemented using two types of coupled flip-flops SR1 and SR2. In Fig. 10, F/F9 is
implemented using SR1 and remaining flip-flops in the SR module F/F10, F/F11, ... ,F/F16 are implemented with SR2.
SR1 and SR2 both have three inputs: Start (Vstart), Set_clock (Vset_clk) and Reset_clock (Vreset_clk). Start (Vstart)
pulse sets “1” in SR1 and resets SR2 i.e. sets “0”. After the start pulse is given, SR module in Fig. 10 will have output
10000000. Clock (Vreset_clk) is generated at the output of gate G1, this either resets the coupled flip-flops in SR
module to “0” or leaves “1” in place based on the comparator’s output. Set_clock (Vset_clk), generated by negative
going output of shift register flip-flop, enables the AND gate to set coupled flip-flop of SR module to “1” state.

] H
I Vset_clk I
Pl
[aHfé
‘ H e
| Vreset_clk }
- —>o I
a: SR1
| VDD |
. H P
| Vset_ck }
DAL
IVstart |'“'
I Y
‘ A
Vreset_clk &
P [ e
Vss — T

b: SR2
Figure 10: Coupling of SR flip-flops to implement the successive approximation logic of ADC.
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