

PASCAL PLUS DATA STRUCTURES,

ALGORITHMS, AND
ADVANCED PROGRAMMING

FOURTH EDITION

Nell Dale

The University of Texas, Austin

Susan C. Lilly
IBM

D. C. HEATH AND COMPANY
Lexington, Massachusetts Toronto

Address editorial correspondence to:
D. C. Heath and Company

125 Spring Street

Lexington, MA 02173

Acquisitions Editor: Randall Adams
Developmental Editor: Karen H. Myer
Production Editor: Rachel D’ Angelo Wimberly
Production Coordinator: Charles Dutton

Cover: TK

This material in no way represents the opinion of IBM, nor does it reflect IBM’s approval or
disapproval.

Copyright © 1995 by D. C. Heath and Company.
Previous editions copyright © 1985, 1988, 1991 by D. C. Heath and Company.

All rights reserved. No part of this publication may be reproduced or transmitted in any form
or by any means, electronic or mechanical, including photocopy, recording, or any
information storage or retrieval system, without permission in writing from the publisher.

Published simultaneously in Canada.

Printed in the United States of America.
International Standard Book Number: 0-669-34720-5
Library of Congress Catalog Card Number: 94-76241
10 9 87 6 5 4 3 21

To my children, David, Joshua, Miriam, and Leah, and to my
grandmothers, Mildred Lilly and Ida Schmidt, who remind me daily

that no one is too young or too old to enjoy learning.
S.C.L.

To my family.
N.D.

Preface

Historically a course on data structures has been a mainstay of most Computer Science
departments. However, over the last ten years the focus of this course has broadened
considerably. The topic of data structures now has been subsumed under the broader
topic of abstract data types (ADTs)—the study of classes of objects whose logical
behavior is defined by a set of values and a set of operations.

Although the term abstract data type describes a comprehensive collection of data
values and operations, the term data structures refers to the study of data and how to
represent data objects within a program; that is, the implementation of structured rela-
tionships. The shift in emphasis is representative of the move towards more abstraction
in Computer Science education. We now are interested in the study of the abstract
properties of classes of data objects in addition to how these objects might be repre-
sented in a program. Johannes J. Martin puts it very succinctly: ... depending on
the point of view, a data object is characterized by its type (for the user) or by its
structure (for the implementer).”l

Although this book’s title is still Pascal Plus Data Structures, its emphasis also has
been moving toward more abstraction over the last two editions. But in keeping with
our respective backgrounds of academia and industry, this shift has been in conjunction
with more attention to software engineering principles, techniques, and practice. Both
of these trends are continued in this fourth edition.

Emphasis

The focus is on abstract data types, their specification, their implementation, and their
application. Within this focus, we continue to stress computer science theory and soft-
ware engineering principles, including modularization, data encapsulation, information
hiding, data abstraction, the top-down design of algorithms and data structures in par-
allel, the analysis of algorithms, and life-cycle software verification methods. We feel
strongly that these principles should be introduced to computer science students early
in their education so that they learn to practice good software techniques from the
beginning. An understanding of theoretical concepts helps students put new ideas that
they encounter into place, and practical advice allows them to apply what they have
learned. Because we feel that these concepts can be taught to those with no formal
mathematics, we consistently use intuitive explanations, even for topics that have a
basis in mathematics, such as the analysis of algorithms. In all cases, our highest goal
is to make our explanations as readable and as easily understandable as possible.

'Johannes J. Martin, Data Types and Data Structures, Prentice-Hall International Series in Computer Sci-
ence, C. A. R. Hoare, Series Editor, 1986.

vii

viii

Preface

New Material and Organizational Changes

In light of the trend toward more abstraction, we have made a number of structural
changes and added new material. We now define the logical properties of an ADT by
specifying the operations that can be performed on them. All operations on ADTs fall
into three classes: constructor operations (operations that create or change a structure),
observer operations (operations that observe the state of the structure), and iterator
operations (operations that process each item in the structure). These operator classes
are defined and discussed. Three new operations are defined on the List ADT—
Length, ResetList, and GetNextltem. These operations allow the user to iterate through
a list and process each item without having to access the list directly.

Standard Pascal is susceptible to the criticism that it does not support encapsulation,
the hallmark of modern software engineering methodology, because the standard does
not support separately compilable units or modules. Fortunately, however, almost all
implementations of Pascal (including Turbo Pascal and Think Pascal) do support the
unit construct, thus providing the encapsulation not present in the standard. Therefore,
in this edition we stress encapsulation through the use of units. All ADTs are encap-
sulated into units. We do, however, demonstrate how to incorporate units into the code
if the system being used does not support them. An icon representing a package
([ﬂ) flags all references to units.

Many languages support the concept of a generic structure—a structure in which
the operations on the data are defined, but the types of the data objects being manip-
ulated are not. No Pascal implementation has this feature; however, it can be simu-
lated. The documentation in the interface of a unit encapsulating an ADT tells the user
to prepare an auxiliary unit that describes the types of the objects being manipulated;
the ADT unit then accesses this auxiliary unit. This technique does not break the con-
cept of abstraction because the user simply is tailoring the ADT to manipulate the
program-dependent data objects.

We have removed the separate FindElement procedure that was internal to the List
ADT in the last edition. Because experience has shown that this generalization con-
fuses students when they first learn to manipulate linked lists, finding the element to
manipulate is repeated within the code of each operation that needs it. In Chapter 7,
after the students are comfortable with linked lists, we introduce this simplification.

Rather than letting the items in a list be accessed by a field named Key, the user
of any ADT requiring a comparison of two items must provide Compare, a comparison
function that takes two items of ItemType and returns Less, Equal, or Greater. We
provide even more flexibility in ADT operations by letting the user pass procedures
and functions as parameters, thus allowing data to be searched on multiple keys or a
list to be ordered on different keys.

We also introduce the questions of visibility and accessibility. For example, should
the structure be defined in the interface section of a unit and declared in the user
program, or should the structure be defined and declared within the implementation
section of the unit encapsulating the ADT?

To reinforce the concept of recursion, we first present the binary search tree algo-
rithms in their recursive form and then translate them into iterative form. Lastly, we
have combined Chapters 11 and 12 into Sorting and Searching and added radix sorting.

Preface ix

Content and Organization

Chapter 1 reviews the basic goals of high-quality software and the basic prin-
ciples of software engineering for designing and implementing programs to meet these
goals. Because there is more than one way to solve a problem, we discuss how com-
peting solutions can be compared through the analysis of algorithms, using Big-O
notation. The techniques for the top-down design of both programs and data structures
are reviewed, with an emphasis on modularization, good programming style, and doc-
umentation. The separation of the design of problem solution from its implementation
is stressed. The idea of making a schedule for completing a programming assignment
is discussed.

ListAndCount, a sample application program in this chapter, produces a numbered
program listing and source-line count of comment lines and executable lines—a tool
that students can use throughout the rest of the course.

Chapter 2 addresses what we see as a critical need in software education— the
ability to design and implement correct programs and verify that they actually are
correct. Topics covered in this chapter include the concept of ““life-cycle” verification;
designing for correctness using preconditions, postconditions, and loop invariants; the
use of deskchecking and design/code walkthroughs and inspections to identify errors
before testing; debugging techniques, data coverage (black box), and code coverage
(clear or white box) approaches; unit testing, writing test plans, and structured inte-
gration testing using stubs and drivers.

The application section for this chapter shows how all these concepts can be applied
to the development of a procedure that searches a list of items using the binary search
algorithm. Students seem to think that an array and a list are synonyms. In order to
make the distinction between them clear from the beginning, we encapsulate a list into
a record with two fields:

Length (type Integer) and Data (type array).

The list is those elements in the array Data from 1 to Length. By making this differ-
ence explicit from the beginning, we trust that students will use the terms array and
list appropriately (never interchangeably) throughout their careers.

Chapter 3 presents data abstraction and encapsulation, the software engineering
concepts that relate to the design of the data structures used in programs. We discuss
three perspectives of data—abstraction, implementation, and application. Abstract
data types are defined as the abstract view of data and operator classes for ADTs are
discussed. We apply these perspectives to the built-in data structures that Pascal sup-
ports: arrays, records, variant records, and sets. We introduce the concept of dynamic
allocation in this chapter along with the syntax for using Pascal pointer variables.

In the application section we reinforce the ideas of data abstraction and encapsu-
lation by creating a user-defined data type, the string. Students learn to write two dif-
ferent kinds of documentation in the context of this application. The functional spec-
ification of the ADT is documentation for the user of the structure; it is implementation
independent. The documentation within the code of the ADT operations is for the
maintainer of the code; it describes the algorithm and how it is implemented.

Preface

Chapter 4 introduces the stack data type. The stack first is considered from its
abstract perspective, and the idea of recording the logical abstraction in an ADT spec-
ification is stressed. We implement the set of stack operations using an array-based
structure and a linked structure; then we compare these implementations in terms of
memory use and operator efficiency using Big-O.

Because the ability to encapsulate an abstract data type in a separately compiled
package is so important, we introduce the concept of a unit in this chapter and use
units throughout the rest of the book. The unit has three parts: the interface section,
which defines the function of the operations in the unit; the implementation section,
which contains the code that implements the operations; and the initialization section.
The functional specification for the stack becomes the interface section of the unit
encapsulating the Stack ADT. The implementation section contains the code, either
the array-based or linked implementation. It is important for the students to note that
the documentation for the interface section is the same for both implementations.

The application section illustrates the use of a stack in a program that evaluates
infix expressions. The unit encapsulating the Stack ADT is brought into the application
program through a USES clause; the only access to the elements on the stack is
through the operations provided.

Chapter 5 introduces the FIFO queue. In addition to discussing the logical prop-
erties of the Queue ADT, this chapter gives a detailed look at the design considerations
of selecting among multiple implementation choices. We examine techniques for test-
ing the Queue ADT using a batch test driver. The technique of allowing the user of
an ADT to define the type of item on the structure and provide a function comparing
two items is presented. Because of the generality that this technique provides, it is
used throughout the rest of the text.

The application in this chapter is a generic multiple-server/single-queue queuing
system simulation. The concepts of abstraction are enforced by the use of the Queue
ADT.

Chapter 6 reviews operator classes within the context of determining the spec-
ification for the List ADT. The new operations Length, ResetList, and GetNextItem
are introduced and used to write three procedures— PrintList, CreateListFromFile, and
WriteListToFile—that access the elements in a list without having access to the struc-
ture itself. The concept of a nontext (binary) file is presented in this chapter and used
in the application. We discuss and compare an array-based implementation and a
linked implementation.

The application program AdManager in this chapter makes use of the List ADT,
the procedures written using the List ADT, and the Queue ADT, thus reinforcing the
ideas of abstraction.

Chapter 7 introduces a variety of programming techniques. We explore a num-
ber of variations of linked structures—circular linked lists, linked lists with headers
and trailers, and doubly linked lists. We also introduce the concept of passing a pro-
cedure or function as a parameter. The issues of visibility and accessibility are pre-
sented in this chapter. Finally, we cover the use of static allocation to implement a
linked structure.

Preface xi

To demonstrate incremental software development, we complete program
AdManager.

Chapter 8 presents the principles of recursion in an intuitive manner and then
shows how recursion can be used to solve programming problems. Guidelines for writ-
ing recursive procedures and functions are illustrated with many examples. We present
a simple three-question technique for verifying the correctness of recursive procedures
and functions and use it throughout the rest of the book.

The application in this chapter is a recursive solution to a maze problem. The imple-
mentation is compared to a nonrecursive (stack-based) approach to demonstrate how
recursion can simplify the solution to some kinds of problems.

Chapter 9 introduces binary search trees as a way to arrange data, giving the
flexibility of a linked structure with order logN search time. In order to build on the
previous chapter and exploit the inherent recursive structure of binary trees, the algo-
rithms first are presented recursively. After all of the operations have been imple-
mented recursively, we code InsertTreeElement and DeleteTreeElement iteratively to
show the flexibility of binary search trees.

The application modifies program ListAndCount (from Chapter 1) to include a
cross-reference generator. Here the students see how an existing program can be mod-
ified—one of the most common real-world programming assignments.

Chapter 10 presents a collection of other branching structures: heaps, priority
queues (implemented with heaps), and graphs. Binary Expression Trees (deleted in the
third edition) are brought back by popular demand. The graph algorithms make use
of stacks, queues, and priority queues thus both reinforcing earlier material and dem-
onstrating how general these structures are.

Chapter 11 covers sorting and searching. We have included radix sort after
searching. We placed it at the end of the chapter to emphasize that it is not a com-
parison sort like the others and to be able to refer to hashing in the discussion. As an
added bonus, queues are used in radix sorting, giving us one more reinforcement for
the generality of the ADTs presented in this book.

Additional Features

Chapter Goals A set of goals is presented at the beginning of each chapter to
help the students assess what they have learned. These goals are tested in the exercises
at the end of each chapter.

Chapter Exercises Most chapters have more than 35 exercises, new or revised
for this edition. The exercises have varying levels of difficulty, including short pro-
gramming problems, the analysis of algorithms, and problems that test the student’s
understanding of concepts. For chapters that contain application programs, there are
sets of exercises that specifically pertain to the material in the application section of
the chapter. These exercises are designed to motivate the students to read the appli-

xii

Preface

cations carefully. There are also exercises marked for Turbo Pascal programmers.
Approximately one-third of the exercises are answered in the back of the text; the
answer key for the remaining exercises is in the Instructor’s Guide. The numbers of
those exercises answered in the text are bold faced so they can be easily identified.

Application Programs There are nine completely implemented applications
that demonstrate a start-to-finish approach to designing a computer program from pro-
gram specifications, including:

the problem statement through to the formal specification

the design of each data structure, using ADTs

the source code for the program (in the text and on disk)

additional topics (for example, testing approaches, error checking, alternate imple-
mentations, suggestions for enhancements)

Program reading is an essential skill for software professionals, but few books include
programs of sufficient length for students to get this experience. There is a set of
exercises and programming assignments based on each application.

Program Disk The source code for both data structures and application pro-
grams is included on a disk provided with the text. Having the source code for the
ADTs on disk encourages the students to think in terms of reusable code. The source
code for the larger application programs is provided to give students practice in mod-
ifying programs, without having to spend time rekeying the original program.
Throughout the text a computer disk icon () appears alongside a description of a
program and its file name.

Programming Assignments A set of recommended programming assignments
for each chapter is included at the end of the book. The assignments represent a range
of difficulty levels and were carefully chosen to illustrate the techniques described in
the text. These assignments, which include modifications and enhancements to the pro-
grams in the application sections of Chapters 1-9, give the students experience in
program modification and program ‘“‘maintenance.” A large selection of additional
programming assignments is also available in the Instructor’s Guide.

Instructor’s Guide An Instructor’s Guide is available that includes the follow-
ing sections for each chapter.

Goals

Outline

Teaching Notes: suggestions for how to teach the material covered in the chapter

Workouts: suggestions for in-class activities, discussion questions, and short

exercises

= Quickie Quiz Questions: additional short-answer questions that can be used in class
to test student comprehension

= Exercise Key: answers to those questions that are not in the back of the book

m Programs: suitable programs in ready-to-copy format

Preface xiii

Transparency Masters Figures from the text, ADT specifications, and algo-
rithms are provided in a form ready to use as transparency masters.

Acknowledgments

We would like to thank the following people who took the time to answer our ques-
tionnaire: Thomas Bennet, University of Missouri, Columbia; Daniel Brekke, Moor-
head State University; John T. Buono, Cochise College, Sierra Vista Campus; Debra
L. Burton, Texas A&M University, Corpus Christi; Saad Harous, Sultan Qaboos Uni-
versity (formerly of Case Western Reserve University); Wayne B. Hewitt, Johnson
County Community College; Debbie Kaneko, Hampton University; Herbert Mapes,
Gallaudet University; Robert E. Matthews, Armstrong State College; M. Dee Medley,
Augusta College; Thomas Meyer, California State University, Bakersfield; Paul M.
Mullins, Youngstown State University; Elaine Rhodes, Illinois Central College; James
Robergé, Illinois Institute of Technology; and Mark A. Taylor, University of Auckland.

Anyone who has ever written a textbook—or is related to someone who has—
knows the amount of time and effort that such a project takes. In theory, revised edi-
tions should not be as time consuming, but somehow they always are. Special thanks
to Al, my husband and gourmet cook, and to all my children and grandchildren for
their love and support. Thanks also to Lorinda who keeps the house clean and office
in order. Thanks to Maggie who sleeps at my feet and Bear who thinks she must
protect me from delivery people—especially those bringing packages from the pub-
lisher. Finally, thanks to all my friends who politely ignore mental lapses and sudden
dashes to the computer.

Anyone who has ever written a textbook also knows that the publisher can be of
great help or hindrance. Fortunately, we know of hindrance only from hearsay. We are
grateful to all our Heath staff —Randall Adams, our acquisitions editor; Karen Myer,
our developmental editor; Rachel Wimberly, our production editor; and Heather Mon-
ahan, our answerer of questions and review arranger. You have all been a superb
team—as usual.

N.D.
S.L.

Brief
Contents

O 0 N O V1 A W N =

= Y
- O

Programming Tools 1

Verifying, Debugging, and Testing 59
Data Design 119

Stacks 189

FIFO Queues 267

Linear Lists 339

Lists Plus 413

Programming with Recursion 481
Binary Search Trees 545

Trees Plus 617

Sorting and Searching Algorithms 685
Appendixes A1

Glossary A16

Answers to Selected Exercises A27
Programming Assignments A75
Index A112

Xv

Contents

1 Programming Tools 1

Goals 1
Beyond Programming 2
A Programmer’s Toolbox 3

Hardware 3
Software 3
Ideaware 3

The Goal: Quality Software 4
Goal 1: Quality Software Works 4
Goal 2: Quality Software Can Be Read and Understood 5
Goal 3: Quality Software Can Be Modified, if Necessary, Without
Excruciating Time and Effort 5
Goal 4: Quality Software Is Completed on Time and Within Budget 6

Getting Started: Understanding the Problem 7

The First Step 7
Writing Detailed Specifications 7

Focus on: Cookies for Uncle Sam 8
The Next Step: Solving the Problem 10

Comparing Algorithms 11
Big-O 13
Some Common Orders of Magnitude 14

Focus on: Family Laundry 16
Top-Down Design 17

Focus on: Top-Down Design for English Majors 18
Focus on: A Note on the Algorithm “Language” 19

Information Hiding 24
Designing Data Structures 24

Focus on: When Ignorance Is Bliss 25

xvii

xviii Contents

Implementing the Solution 27

Comments 27
Declarations 27
Program Structures 28
Procedure or Function Calls 28

Nonobvious Code 28

Self-Documenting Code 28

Prettyprinting 29

Using Constants 30

All That. .. and on Schedule 30

Summary 31

Application: Software Development Tools 1: List
and Count 32

Reviewing the Specifications 32
Focus on: Estimating Lines of Code 33

Processing Source Lines 34
Top-Down Design 35

The GetFiles Module 36

The TerminateProcessing Module 38
The ProcessProgramFile Module 38
The StringType Module 41

The Program 44

Standards for Program Formatting 50

Exercises 54

2 Verifying, Debugging, and Testing 59

Goals 59
Where Do Bugs Come From? 61

Errors in the Specifications and Design 61
Compile-Time Errors 63

Focus on: Use of Semicolons in Pascal 64
Run-Time Errors 66
Designing for Correctness 68

Assertions and Program Design 68
Preconditions and Postconditions 69
Loop Invariants 70

Contents

Deskchecking, Walk-Throughs, and
Inspections 75

Program Testing 77

Debugging with a Plan 82

Focus on: Advanced Debugging Techniques with Turbo
Pascal 84

Developing a Testing Goal 85

Data Coverage 85
Code Coverage 87

Test Plans 89
Structured Integration Testing 90

Top-Down Testing 90
Bottom-Up Testing 92
Mixed Testing Approaches 95

Practical Considerations 95

Summary 96

Application: The Binary Search and Its Test
Driver 97

Searching 99

The Binary Search Algorithm 99
The Code— Version 1 103
Developing a Test Driver 103
Developing a Test Plan 107

The Code— Version 2 109

The Code—Final Version 111

Exercises 112

Data Design 119

Goals 119

Data from the Top Down 120
What Do We Mean by Data? 120
Data Abstraction 120

Data Structures 123

Focus on: Object-Oriented Programming 124

Abstract Data Type Operator Classes 128

Xix

Contents

Built-in Composite Data Types 129

One-Dimensional Arrays 129
Two-Dimensional Arrays 134

Last Words on Arrays 140

Records 141

Other Pascal Built-in Data Types 143
Variant Records 143

Sets 150

Pointers and Dynamic Memory Allocation

Pointer Variables 154
Using NIL 155
Using Procedure New 156

Focus on: Crash Protection 157

Accessing Data Through Pointers 158
Using Dispose 159

Summary 160
Application: Strings 161

The Logical Level: The String ADT 161
The Implementation Level 162
Implementing the String Operations 164
Length Operation 165

CharAt Operation 166

MakeEmpty Operation 166

Append Operation 167

ReadLine Operation 168

PrintString Operation 170

Substring Operation 171

Concat Operation 173

CompareString Operation 176
Documentation in the String Package 180
Error Checking in the String Package 180

Exercises 181

Stacks 189

Goals 189
The Logical Level 190

What Is a Stack? 190
Operations on Stacks 191

153

Contents

The User Level 194
The Implementation Level 200

The Implementation of a Stack as a Static Array 200
Stack Operations with the Array Implementation 201

A More General Implementation 206

The Implementation of a Stack as a Linked Structure 207
Implementing Procedure Push 207

Implementing Procedure Pop 217

Implementing the Other Stack Operations 220
Comparing the Stack Implementations 222

Encapsulating a Data Structure: the Unit 223

Debugging Hints for Pascal Pointers 229

Avoiding Compile-Time Problems 229
Avoiding Run-Time Problems 230

Stack Applications 231
Summary 232
Application: Expression Evaluation 233

Data Structures 235

Top-Down Design 237

The Program 247

Error Checking 253

Other Notations for Expressions 255
Prefix Notation 255

Postfix Notation 257

Exercises 257

FIFO Queues 267

Goals 267
The Logical Level 268

What Is a Queue? 268
Operations on FIFO Queues 268

The User Level 272
The Implementation Level 274

The Implementation of a Queue as a Static Array 274
Another Queue Design 276
Comparing Array Implementations 282

The Implementation of a Queue as a Linked Structure 282

xxi

