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Preface

This book is written for an interdisciplinary readership of graduate students
and researchers interested in nonlinear dynamics, stochastic processes, sta-
tistical mechanics on the one hand and high energy physics, quantum field
theory, string theory on the other. In fact, one of the goals that I had in
mind when writing this book was to make particle physicists become inter-
ested in nonlinear dynamics, and nonlinear physicists become interested in
particle physics. Why that? Didn’t so far these two subjects evolve quite
independently from each other? So what is this book about?
Mathematically, the subject of the book are coupled map lattices ex-
hibiting spatio-temporal chaotic behaviour. Physically, the subject is a
topic that lies at the heart of elementary particle physics: There are about
25 free parameters in the standard model of electroweak and strong interac-
tions, namely the coupling strengths of the three interactions, the fermion
and boson masses, and various mass mixing angles. These parameters are
not fixed at all by the standard model itself, they are just measured in
experiments, and a natural question is why these free parameters take on
the numerical values that we observe in nature and not some other values.
It will turn out that the answer is closely related to certain distinguished
types of coupled map lattices that we will consider in this book as suitable
models of vacuum fluctuations. These dynamical systems, called ‘chaotic
strings’ in the following, are observed to have minimum vacuum energy
for the observed standard model parameters. They yield an extension of
ordinary quantization schemes which can account for the free parameters.
In this sense this book deals with both, nonlinear dynamics and high
energy physics. So far only very few original papers have been published

vii



viii Preface

on this very new subject. With the current book I hope to make these im-
portant new applications for coupled chaotic dynamical systems accessible
to a broad readership.

The book consists of 12 chapters. The first few chapters will mainly
concentrate onto the theory of the relevant class of coupled map lattices,
their use for second quantization purposes, and their physical interpretation
in terms of vacuum fluctuations. In the later chapters concrete numerical
results are presented and these are then related to standard model phe-
nomenology. Sections marked with an asterisk can be omitted at a first
reading, these sections deal with interesting side issues which, however,
are not necessary for the logical development of the following chapters.
In view of the fact that (unfortunately!) many readers may not have the
time to read this book from the beginning to the end, I included a very
detailed summary as a self-contained chapter 12. This summary contains
the most important concepts and results of this book and is written in a
self-consistent way, i.e. no knowledge of previous chapters is required.

The research described in this book developed over a longer period of
time at various places. I started to work on the relevant types of coupled
map lattices during my stay at the Niels Bohr Institute, Copenhagen, in
1992 and continued during a stay at the University of Maryland in 1993.
Some important numerical results, now described in section 7.2 and 8.5,
were obtained at the RWTH Aachen in 1994 as well as during a visit to the
Max Planck Institute for Physics of Complex Systems, Dresden, in 1996.
The main part of the work was done at my home institute, the School of
Mathematical Sciences at Queen Mary, University of London, as well as
during long-term research visits to the Institute for Theoretical Physics at
the University of California at Santa Barbara in 2000 and to the Newton
Institute for Mathematical Sciences at Cambridge in 2001. The hospitality
that I enjoyed during these visits was very pleasant, and the nice research
atmosphere was really inspiring.

The number of people from which I learned during the past years and
who thus indirectly contributed to this book is extremely large— too large
to list all these individuals separately here! So at this point let me just
thank all of them in one go.

London, February 2002
Christian Beck



Introduction

This book deals with new applications for coupled map lattices in quantum
field theories and elementary particle physics. We will introduce appropri-
ate classes of coupled map lattices (so-called ‘chaotic strings’) as suitable
spatio-temporal chaotic models of vacuum fluctuations.

From a mathematical point of view, coupled map lattices are high-di-
mensional nonlinear dynamical systems with discrete space, discrete time
and continuous state variables. They were for the first time introduced by
Kaneko in 1984 [Kaneko (1984)]. The dynamics is generated by local maps
that are situated at the sites of a lattice. There can be various types of
couplings between the maps at the lattice sites, for example global cou-
pling, exponentially decreasing coupling or diffusive coupling. For globally
coupled systems, typically each lattice site is connected to all others with
the same coupling strength. In the exponentially decreasing case the cou-
pling strength decays exponentially with distance. For diffusively coupled
map lattices there is just nearest-neighbor coupling, corresponding to a dis-
crete version of the Laplacian. The latter one is the mest relevant coupling
form for applications in quantum field theories. Very complicated periodic,
quasi-periodic or spatio-temporal chaotic behaviour is possible in all these
cases (see the color plates in chapter 2 and 4 for some illustrations).

Generally, the spectrum of possibilities of spatio-temporal structures
that can be generated by coupled map lattices is extremely rich and has
been extensively studied in the literature, the emphasis being on the bi-
furcation structure [Bunimovich et al. (1996); Just (1995); Amritkar et
al. (1993); Gade et al. (1993); Amritkar et al. (1991); Pikovsky et al.
(1991)], Liapunov exponents [Yang et al. (1996); Torcini et al. (1997b);

xiii



xiv Introduction

Kaneko (1986b); Isola et al. (1990)], traveling waves [Carretero-Gonzalez
(1997); He et al. (1997)], phase transition-like phenomena, [Grassberger
et al. (1991); Cuche et al. (1997); Blank (1997); Marcq et al. (1996);
Boldrighini et al. (1995); Keller et al. (1992a); Houlrik et al. (1992);
Miller et al. (1993); Gielis et al. (2000)], the existence of smooth in-
variant measures [Baladi et al. (1998); Jiang et al. (1998a); Chaté et al.
(1997); Mackey et al. (1995)], synchronization [Lemaitre et al. (1999);
Bagnoli et al. (1999); de San Roman et al. (1998); Jiang et al. (1998b);
Wang et al. (1998); Ding et al. (1997)], control [Gade (1998); Egolf et
al. (1998); Parekh et al. (1998); Mondragon et al. (1997); Ohishi et al.
(1995)] and many other properties. Applications for coupled map systems
have been pointed out for various subjects, among them hydrodynamic
turbulence [Beck (1994); Hilgers et al. (1997b); Hilgers et al. (1999a);
Bottin et al. (1998)], chemical waves [Kapral (1993)], financial markets
[Hilgers et al. (1997a)], biological systems [Bevers et al. (1999); Losson
et al. (1995); Martinezmekler et al. (1992); Dens et al. (2000)] and, at
a much more fundamental level, for quantum field theories [Beck (1998);
Beck (1995c¢)]. In this book we will concentrate on the quantum field the-
oretical applications.

A possible way of embedding coupled map lattices into a general quan-
tum field theoretical context is via the Parisi-Wu approach of stochastic
quantization [Parisi et al. (1981); Damgaard et al. (1988); Damgaard et
al. (1984); Gozzi (1983); Namiki et al. (1983); Batrouni et al. (1985);
Rumpf (1986); Ryang et al. (1985); Breit et al. (1984); Albeverio (1997)].
In this approach a quantized field is described by a stochastic differen-
tial equation evolving in a fictitious time coordinate. Essentially, spatio-
temporal Gaussian white noise is added to the classical field equation in
order to second quantize it. The fictitious time is different from the physi-
cal time; it is an additional parameter that is a useful tool for the quanti-
zation of classical fields. Quantum mechanical expectations can be cal-
culated as expectations with respect to the realizations of the stochas-
tic process. It is now possible to generate the spatio-temporal Gaussian
white noise of the Parisi-Wu approach by a weakly coupled chaotic dy-
namics on a very small scale. In particular, if we choose e.g. Tchebyscheff
maps to locally generate the ‘chaotic noise’, the convergence to Gaussian
white noise under rescaling can be proved rigorously [Beck et al. (1987);
Billingsley (1968); Chernov (1995); Beck (1990b); Beck (1995a); Chew et
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al. (2002); Zygmund (1959)]. If we quantize by means of such a chaotic
dynamics, no difference occurs on large (standard-model) scales, since on
large scales the chaotic behavior of the maps is very well approximated
by Gaussian white noise, leading to ordinary quantum field theoretical
behavior. However, on very small scales (e.g. the Planck scale or be-
low) there are interesting differences and new remarkable features. The
view that the ultimate theory underlying quantum mechanical behaviour
on a small scale is a deterministic one exhibiting complex behaviour has
also been advocated by t’Hooft [t’'Hooft et al. (1992); t’Hooft (1997a);
t’Hooft (1997b)].

How can a discrete chaotic noise dynamics arise from an ordinary field
theory? How can there be a dynamical origin of the noise? We will show
that ordinary continuum field theories with formally infinitely large self in-
teraction directly and intrinsically lead to diffusively coupled map lattices
exhibiting spatio-temporal chaos. This limit of large couplings stands in
certain analogy to the anti-integrable limit of Frenkel-Kontorova-like mod-
els [Aubry et al. (1990); Baesens et al. (1993)]. One of our main examples
is a self-interacting scalar field of ¢*-type, which leads to diffusively coupled
cubic maps in the anti-integrable limit. A discrete dynamics with strongest
possible chaotic properties can then be obtained, which can be used for
stochastic quantization. One can then consider coupled string-like objects
in the noise space, which, to have a name in the following, will be called
‘chaotic strings’. We will use this model and some related ones as dynam-
ical models of vacuum fluctuations. The chaotic dynamics will be scale
invariant, similar as fully developed turbulent states in hydrodynamics ex-
hibit a selfsimilar dynamics on a large range of scales [Bohr et al. (1998);
Frisch (1995); Arad et al. (2001); Pope (2000); Ruelle (1982)]. In fact,
chaotic strings behave very much like a turbulent quantum state. The
probabilistic aspects of our model can be related to a generalized version
of statistical mechanics, the formalism of nonextensive statistical mechan-
ics [Tsallis (1988); Tsallis et al. (1998); Abe (2000); Abe et al. (2001);
Beck (2001b); Beck et al. (2001); Plastino et al. (1995); Wilk et al. (2000);
Pennini et al. (1995); Johal (1999); Cohen (2002)].

What can we learn from these types of statistical models? We will
show that the assumption of a dynamical origin of vacuum fluctuations,
due to chaotic strings on a small scale, can help to explain and reduce
the large number of free parameters of the standard model. The guiding
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principle for this is the minimization of vacuum energy of the chaotic string,.
We will provide numerical evidence that the vacuum energy is minimized
for certain distinguished string coupling constants. These couplings are
numerically observed to coincide with running standard model couplings as
well as with gravitational couplings, taking for the energy scales the masses
of the known quarks, leptons, and gauge bosons. In this way our approach
can help to understand many of the free parameters of the standard model,
using concepts from generalized statistical mechanics.

The approach described in this book is new and different from previous
attempts to calculate, e.g., the fine structure constant [Eddington (1948);
Gilson (1996)]. It is much more in line with a suggestion made by R.S.
MacKay in his book [MacKay (1993)] (p. 291), namely that the fine struc-
ture constant might be derived as a property of a fixed point of an appro-
priate renormalization operator. As we shall see in chapter 7, the relevant
dynamical systems are indeed the chaotic strings, the renormalization op-
erator is a scale transformation, and the renormalization flow corresponds
to an evolution equation for possible standard model couplings in the ficti-
tious time of the Parisi-Wu approach. This renormalization flow is not only
relevant for the fine structure constant but provides information on all the
other standard model parameters as well.

The minima of the vacuum energy of chaotic strings can be determined
quite precisely and allow for high-precision predictions of various running
electroweak, strong, Yukawa and gravitational coupling constants. These
can then be translated into high-precision estimates of the masses of the par-
ticles involved. Moreover, evolving the couplings to higher energies grand
unification scenarios can be constructed. In this sense the approach de-
scribed in this book yields an interesting amendment of the usual formu-
lation of the standard model. Based on the assumption that chaotic noise
strings exist in addition to the continuous standard model fields, we obtain
high-precision predictions of the free parameters of the standard model
(see Tab. 12.4 in chapter 12), which can be checked by experiments. Our
chaotic models yield rapidly evolving dynamical models of vacuum fluc-
tuations which, as we will show in detail in the following chapters, have
minimum vacuum energy for the observed standard model parameters.

Can we further embed the chaotic strings into other theories, for exam-
ple superstring and M-theory [Green et al. (1987); Kaku (1988); Polchinski
(1998); Polchinski (1999); Witten (1997); Banks et al. (1997); Gauntlett
(1998); Susskind (1995); Antoniadis et al. (1999a); Gubser et al. (2001)],
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or relate them to models of 2-dimensional quantum gravity [Gross et al.
(1990)] or string cosmology [Ghosh et al. (2000); Melchiorri et al. (1999);
Veneziano (1997); Lidsey (1998)]? Could the very recently established con-
tact between string field theory and stochastic quantization yield a suit-
able embedding [Polyakov (2001); Baulieu et al. (2001); Periwal (2000);
Ennyu et al. (1999)]? All this is possible but open at the moment. Gen-
erally it should be clear that chaotic strings are very different from super-
strings. The latter ones evolve in a regular way, the former ones in a chaotic
way. Still it is reasonable to look for possible connections with candidate
theories of quantum gravity, such as superstring theory or M-theory. These
theories require an extension of ordinary 4-dimensional space-time to 10 (or
11) space-time dimensions. The 6 extra dimensions are thought to be ‘com-
pactified’; i.e. they are curled up on small circles with periodic boundary
conditions. One possible way to embed chaotic strings is to assume that
they live in the compactified space of superstring theory. The couplings
of the chaotic strings can then be regarded as a kind of inverse metric in
the compactified space, determining the strength of the Laplacian coupling.
The analogue of the Einstein equations as well as suitable scalar field equa-
tions then lead to the observed standard model coupling constants, fixed
and stabilized as equilibrium metrics in the compactified space.

Let us give an overview over the following chapters. In chapter 1 we
will generalize the stochastic quantization method to a chaotic quantiza-
tion method, where the noise is generated by a discrete chaotic dynamics
on a small time scale. In chapter 2 we will introduce chaotic strings and
discuss some of their symmetry properties. Two types of vacuum energies
associated with chaotic strings are discussed in chapter 3, namely the self
energy and the interaction energy of chaotic strings. Spontaneous symme-
try breaking phenomena for chaotic strings and their higher-dimensional
extensions will be investigated in chapter 4. In chapter 5 we will show why
chaotic strings can be regarded as simple selfsimilar dynamical models of
vacuum fluctuations, and introduce webs of Feynman graphs that describe
this physical interpretation. In chapter 6 we will relate the chaotic string
dynamics to a thermodynamic description of the vacuum, using concepts
from generalized statistical mechanics and information theory. In chapter
7 we will consider analogues of Einstein field equations that make a prior:
arbitrary standard model couplings evolve to the stable zeros of the interac-
tion energy of chaotic strings. We will provide extensive numerical evidence
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that the smallest stable zeros of the interaction energy numerically coincide
with running electroweak and strong coupling strengths, evaluated at the
smallest fermionic and bosonic mass scales. In chapter 8 we will consider
suitable self-interacting scalar field equations for possible standard model
couplings, which make a priori arbitrary couplings evolve to the local min-
ima of the self energy of the chaotic strings. We will present extensive
numerical evidence that the self energy has local minima that numerically
coincide with various Yukawa, gravitational, electroweak and strong cou-
plings at energy scales given by masses of the three families of quarks and
leptons. In chapter 9 we extend the analysis to bounded quark states, and
provide numerical evidence that the total vacuum energy has minima for
running strong coupling constants that correspond to the mass spectrum
of light mesons and baryons. The precision results of chapter 7 and 8 will
be used in chapter 10 to evolve the standard model couplings to much
higher energies and to construct grand unification scenarios. In chapter 11
we will discuss the connection with extra dimensions and describe possible
scenarios at the Planck scale and beyond. Finally, chapter 12 is a de-
tailed, self-contained summary of the most important concepts and results
described in chapter 1-11.
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