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FOREWORD

Numerical models of porous media are continuum analogs of two mathematical formulations:
Biot's theory and the theory of mixtures.

The concepts and thinking underlying the mathematical model and the derivation of general,
coupled chemo-thermoelastic equations based on Biot's theory are presented by Weiler. As one
studies this formulation and reads the applications, the number of physical constants becomes
mind-boggling, despite the fact that Biot's theory is designed to simplify the two-phase phenomena.
It becomes obvious that theory and numerics is worthless without adequate experimentation.
Fortunately, several papers here treat experimental aspects of the problem for ablative phenolic
materials.

An alternative approach, the theory of mixtures, is applied to two problems in biomechanics.
Gu, Lai and Mow obtain numerically the concentration of ions, fluid and ion velocities and the
strain field inside due to mechanical and osmotic pressure outside of a triphasic mechano-electro-
chemical layer. R. L. Spilker and E. S. de Almeida Neto develop a finite element formulation for
the governing equations for a biphasic incompressible hyperelastic, finite deformable solid and
incompressible, inviscid fluid. This more general theory offers fresh insight to the engineered and
geological materials community, but it remains to be seen if it simplifies matters. If these theories
tend to overly smear out local detail and your interest is in the details of energy transfer, then read
Kaviany. He provides heat transfer (all modes) and fluid flow equations for periodic structures,
particularly for packed beds of spherical particles.

In practical cases, solution of these numerical systems requires extensive computing resources,
hence it is little surprise that thermo-poroelastic applications presented here are limited to one-
dimensional problems. Nonetheless, more general problems may be within reach. The path is
pioneered by the longer established soil mechanicians. For instance, Mish, Herrmann and Mura-
leetharan treat multi-dimensional soil dynamics problems using several forms of Biot’s theory and
discuss their time integration. Their interest is in development of efficient finite element codes
capable of accurate calculation of response, moreover free of spurious high frequency oscillations.

The fundamental model of thermal decomposition of phenolic resin composites couples a single
conservation of energy equation with mass continuity and conservation of gas momemtum equa-
tions, the latter featuring an equation of Darcy or Darcy-Forcheimer type. Deformation of the ma-
terial system is neglected. Keyhani and Krishnan use such a model to study solution sensitivity to
highly variable (and uncertain) thermophysical properties and weakly-and fully-coupled equations
as reflected in results for pore pressure and thermal advection.

Adding material expansion to the above fundamental model, Henderson, Florio and Miriyale
couple separate conservation of energy equations for solid and gas, mass continuity and conser-
vation of gas momemtum featuring a Darcy-Forcheimer type equation. Expansion of the material
is accounted for parametrically and as a function of time; this simplification eliminates solving or
the solid momemtum, yet affects the solution interactively in a stepwise manner.

The most complete model is one featuring chemo-thermo-poroelastic behavior. Employing such
a model, Wu and Katsube develop, step-by-step, a micromechanical formulation of the problem.
Their inclusion of elastic deformation is focused upon pore volume change due to decomposition
and shrinkage. McManus, using both pressure dependent and independent Arrhenius forms to
model pyrolysis, and Biot’s theory for deformation, provides boh analytical and numerical results
with suggestions for improvement of the latter. Sullivan employs a finite element code to investigate
the physics of decomposing phenolic composites with respect to various parameters. Of particular
interest is the effect of elastic strain.

iii



As mentioned above, the importance of experimental observation to theory and modeling is
essential. For this reason, experimentalists were invited to contribute data on phenolic composites.
Brown and Clemons offer substantial documentation on the process dynamics of carbon-carbon
from carbon-phenolic. Stokes characterizes the permeability of carbon phenolic in two temperature
regimes by studying the material microstructure.

In closing, the editors apologize for the proliferation of symbols and the confusion they may
cause. On the other hand, we thank the authors for their timely contributions. We think you will
find this volume worthwhile.

N. J. Salamon
Pennsylvania State University

R. M. Sullivan
Marshall Space Flight Center
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FULLY COUPLED THERMO-PORO-ELASTO

GOVERNING EQUATIONS

Frank C. Weiler
Lockheed Missiles and Space Company
Palo Alto, California

ABSTRACT

The objective of the present paper is to outline the development of a set of thermo-poro-elasto governing equations which represents
the physical theory upon which new advanced rocket nozzle analysis computer programs will be based. The three relevant areas
of interest are (a) nonlinear thermo-poro-structural analysis, (b) nonlinear pyrolysis gas flow, and (c) nonlinear heat transfer, all of
which pertain to rocket nozzle ablative materials such as carbon-phenolics.

INTRODUCTION

Due to the nature of this paper, it is presented in 1-column, full width format, mainly because of the large number of equations
required to outline the development. It is beyond the scope of the present paper to present an in depth review of all of the theory
behind the relevant equations which govern the phenomenon of how rocket nozzle ablative materials behave. The present paper
represents a condensed version of a previous paper (Reference [1]) wherein complete derivations are presented. Some of the
material contained in [1] was drawn from references [3] through [7], which formed the basis of the original paper [2]. However,
much has been derived as an extension to these references, incorporating appropriate formulations where deemed necessary.
References [8-32] list but a few of the vast extent of the literature relevant to the “pore presure” phenomenon. The reader is
referred to these sources [1-32] for more detailed information complementary to the current report.

The governing equations will be developed in sequence for (a) the concepts of a porous medium, (b) the nonlinear thermo-poro-
structural response, (c) the nonlinear pyrolysis gas generation and flow, and (d) the nonlinear heat transfer within the material. This
will be followed by a section discussing the coupling which exists between these three disciplines. Finally, the governing equations
(which were cast into finite element form) will be shown and appropriate solution algorithms will be postulated.

The author will apologize up front for being pedantic, but felt that many of the detailed explanations were necessary to make
absolutely clear what assumptions were involved, and exactly what was was being derived. All too often, many of the articles in
the literature do not clearly state implied assumptions, and also do not make it clearly known what is being derived. Many times

a final equation is stated without any reference to where it came from. These practices have left the reading audience bewildered
and confused. The author hopes that this is not the case with the present paper.

Before proceeding, a few words about the notation used in this paper. Most of the time, matrix and vector notation will be used
instead of indical notation (who can ever keep track of all of those subscripts?). To help distinguish between vectors and matrices,
the convention of lowercase characters representing vectors and UPPERCASE characters representing matrices will be used, with
the possibility of a few exceptions. In addition, both lowercase and uppercase boldface characters represent vectors and matrices
in the same manner as if the appropriate braces {x} for column vectors, floors || for row vectors, brackets [x| for matrices and
[+] for diagonal matrices were used. Also, a superscript “T” represents the transpose operation on both vectors and matrices.

Solid Skeleton, Pores & Porosity

The medium of interest is that of a porous material, which consists of a solid skeleton (sometimes referred to as the solid phase)
and voids or porosity which contains a fully saturated gas (or fluid). The subject of a partially saturated gas (or fluid) could equally
be treated, but the problem of interest is for a fully saturated one. The gas is assumed to distribute pressure evenly to all surfaces
of the solid skeleton. In addition, only those pores which are interconnected are included in the pore volume, and are considered
separately from the solid skeleton. Those pores which are not interconnected are considered as part of the solid skeleton. This
assumption is usually referred to as effective porosity within the literature.

The ensuing governing equations will be developed for a representative control volume (RCV) which is assumed large enough
such that the exact nature and arrangement of the individual pores is unimportant. However, the RCV is still small enough so it
may be treated as an infinitesimal volume. The porosity (or pores) need not be constant throughout the body, but are assumed to
vary slow enough so they may be considered constant within the RCV.

Now, the total volume V' in the RCV is the sum of the pore volume V, and the solid volume V,, i.e.,
Ve |4

V = V, + 2
.9+ Py 12 ‘V’ 1%

(1-¢) (1a,b,¢)
where the volume porosity ¢ has been defined as the ratio of the pore volume to the total control volume. There are two types
of porosity used in the following derivations. There is a volume porosity o defined above and an areal porosity w; which will be
explained next.

In the typical RCV, the interconnected void spaces (pores) form the pore volume. However, the tortuous paths of these intercon-
nected pores are far from being uniform, and possess maximum and minimum cross sectional areas. If this RCV was cut by a
series of parallel planes, then the cut surfaces would produce different cut pore areas on each of the cut planes. The ratio of the



cut pore area to the total cut cross-sectional area is defined as the areal porosity w; and is given by (i = coordinate direction )

cut pore area on the it* face @)
w; = T
whole area on the it* face
For the present, they are considered different for the different principal directions of the material. In the cartesian (x,y,z) coordinate

system, the areal porosities are denoted w.,w,, and w,. To further illustrate, if the areal porosities of these cut planes were
plotted versus the distance across the RCV, they would appear random in nature as shown in Figure 1.

Areal Porosity @

T — Minimum

Distance Through Control Volume

Figure 1 - Variation of Areal Porosity through the RCV

One may notice that maximum and minimum values occur, even within this representative control volume. For the purposes of the
following derivation, two types of areal porosity extremes will be defined:

force areal porosity - represents all of the areal porosities which lie above some upper threshold (e.g., the top 5%)
and are designated by w;.

flow areal porosity - represents all of the areal porosities which lie below some lower threshold (e.g., the bottom
5%) and are designated by v;.

In reality, if one were to integrate the cut pore area (or areal porosity) distribution shown in Figure 1 along the axis perpendicular
to the cuts, the resulting volume (or value) would be the pore volume (or volume porosity). Consider

AP(2)dz: = V! = @,V

where A? represents the cut pore area for the i-th direction cut face (x, y or z). Since the volume of the pores is single valued,
then V7 =V} =V}, causing the average areal porosities &, = &, = @. = . This fact would be true regardless of the direction
of the cuts. This is why the literature always treats the areal porosity equal to the volume porosity. What really is meant is that the
average areal porosity within the RCV is equal to the volume porosity .

However, as will be seen later in the derivation, the maximum areal porosity is associated with the force balance equations
(stresses) since the minimum solid skeleton area corresponds to the maximum pore area, which therefore greatly influences the
local state of stress in the solid skeleton. On the other hand, the minimum areal porosity is associated with the flow of the pyrolysis
gases through the porous material, and therefore it is the minimum pore area which greatly influences the state of this flow. This
is the reasons given for the name definitions presented above. More about these concepts will be discussed later.

Nonlinear Thermo-Poro-Structural Equations

Since matrix notation will be used extensively in the following derivation of the governing thermo-poro-structural equations, the
following vector definitions for stress o and total strain e will be made, with similar definitions applying for mechanical strain €™,
pore-pressure strain ", thermal strain et*, and creep strain e°. In addition, the vector form of the Kronecker delta contraction
function 6, the areal porosity vector w and matrix [W| (explained below) and the identity diagonal matrix [1] will also be
made. They are presented here (and throughout this paper) in the cartesian (x,y,z) coordinate system. They will now be defined
for convenience in row vector notation by



{o} = oz 0y 0z Ty Tyz Tz
T
{e} = e €& €& Yoy Yyz Yoz
& = 11110 0 0]
(3a)
T
w = |wpwyw, 0 0 0 |
ij = [wy wy w, W, wy w; ]
1] = [1 1 1 1 1 1 |

The last two definitions are for a diagonal matrix W and I where the notation [...| was used. Notice that the §,w and [W|
definitions are related by

W] (3b)

Mechanical, Equivalent and Total Stress Definitions

Figure 2 depicts a representative control volume (RCV) of a porous material loaded by both mechanical stresses o7t and pore
pressure p. There are two distinct boundaries associated with this RCV. The outer boundary B, and the interior boundary B;.
The outer boundary consists of two parts;

The outer solid boundary B,, which represents that portion of the cut faces where the solid skeleton material exists. The
area of this outer boundary is the solid area A,,.

The outer pore boundary B,, which represents that portion of the cut faces where the (interconnected) pores exists. The
area of this outer boundary is the pore area 4,,.

The interior boundary represents all of the boundaries between the (interconnected) pores and the solid skeleton. Those pores
which are not interconnected are considered part of the solid skeleton. These boundary and area definitions will now be used to
define the loading which exists on the RCV. The mechanical stresses o™ are assumed to act only on the solid skeleton, and
therefore, the mechanical surface tractions act only on 4,,, i.e., the B,, portion of B,. The pore pressure p is assumed to act
on 4,, ,i.e., onthe B,, portion of the outer boundary B,, and also on all of the interior boundary B;.

Figure 2 - Representative Control Volume & Loadings

The. RCV shown in Figure 2 may be considered as a 2-dimensional (x-y) model, with the x-axis horizontal (to the right), the y-axis
vertical (upward) and the z-axis coming out of the paper. It is understood that the incremental lengths of this RCV are dz,dy and
dz. The 2-dimensional x-force and z-moment equilibrium equations will be developed for this model. The remaining 2-dimensional

3
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Similarly, the moment equilibrium equations are given by

oy = Tis
Tyz — Tzy (8b)
Tzz — Tzz

Therefore, by defining equivalent stresses as shown in equations (7), it is these stresses which obey the equilibrium equations
found in the theory of solid elasticity.

It is important to note that when the areal porosities w; are assumeddifferent in the principal material directions, then the actual
mechanical shear stresses 77 acting on the solid skeleton are different even though the average shear stresses r;; are the sfame,
as shown by equations (7) and (8b). Of course when the areal porosities are a[l thfe same, say w = ¢ the volume porosity as
explained above, then the actual mechanical shear stresses 777 are the same, differing only in magnitude from the average shear

stresses r;; by the factor (1 — ).

Another interpretation may be made for the equivalent stress definitions given in equations (7). Notice that these equivalent stresses
are an area weighted average (through use of the areal porosities w; ) of the solid skeleton stresses o7} and the pore pressure p.
They could therefore just as easily be called the total average stresses o acting on the RCV rather than the equivalent stresses.
The two will be treated equivalently in what follows. The equivalent stress definitions given in equations (7) may be restated in
vector notation as (where [I|,/W| and w are defined in equations (3))

o=[1-W|o™ — wp pore anisotropy

(9)
o= (l-p)o™ — @bp pore isotropy

Throughout the remainder of this section, dual sets of equations will be presented. The first set will include the pgssibility_that the
areal porosities may be different in the principal directions of the material (where at least the local maximum is in fact different).
Since this section is developing the thermo-poro-structural equations, the force areal porosity w; will be used. These eqyatlons
will be labeled as pore anisotropy. The second set of equations will include the usual assumption that the areal porosities are
the same in all directions, and therefore be labeled pore isotropy.

Before proceeding with the development of the constitutive equations for these stress variables, an alternate defi.niti_on of stress
will be made. Towards this end, consider Figure 3 which highlights the top face of the RCV. The stresses in this figure are by
definition the forces acting on the face of the RCV divided by the total area of the face. In the first RCV in Figure 3, the total

average stress o acts over the top face and the pore pressure p acts normal to all interior surfaces of the solid skeleton, i.e.,
those interior surfaces which form part of the interconnected pores. In the second RCV, the average mechanical stress o° is
assumed to act only on the solid skeleton but is averaged over the whole outer surface area 4, = 4,, + 4,,. It is also important
to note that the open portion of the pores on this face (defined as A4,, above) have no applied loads. In the third RCV, the pore
pressure p is assumed to act on all interior pore surfaces and on the whole outer surface area A4,.

o ol p

AAAAARRAREZE

Total Stress acts on the Mechanical Stress acts only Pressure Stress applied
whole area, presure acts on the solid skeleton, but everywhere but only
on the pores and faces averaged over whole area normal to the boundary

Figure 3 - Decompositicn of Applied Stresses & Pressure

Therefore, when viewing Figure 3, it becomes apparent that the total loading (first RCV) may be decomposed into a pure pressure
loading (third RCV) and the remaining average mechanical stress loading (second RCV). This is simply a force decomposition
since all three stress measures use the same total outer surface area A, in their definition. Consequently

a

o =o0" - bp pore anisotropy

‘ (10)
o =0" - 6p pore isotropy

where § is the vector form of the Kronecker delta function defined in equations (3). Remember, the sign convention is that the
stresses are positive in tension whereas the pressure is positive in compression, thereby causing the minus sign for the pressure
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term in (10). The pressure is a direct stress and therefore is added only to the direct stress (o,,0,,0,) components, hence the
use of the Kronecker delta function in this equation.

This alternate definition of stress acting on the RCV is one for convenience in the development that follows. Remember, o* is the
average mechanical stress acting on the solid skeleton and is defined by the whole outer surface area 4,. In contrast, the actual
mechanical stress o™ defined in equation (9) acts only on the outer solid skeleton area A4,, (see above). With these definitions,
the actual mechanical stress o™ may be related to the average mechanical stress o* and the pore pressure p by the following.
Equating the total average stress definitions given by equations (9) and (10) leads to

o™ = [I-W| ' [6* - (6-w)p] .
pore anisotropy (11a)

o = [I-W] o™ + (6-w)p

If the areal porosities w; were all equal, say to w which is equal to the volume porosity ¢ as explained above, then these equations
would reduce to

(1-¢) pore isotropy (11b)
o = (1—¢)[c™ + 6p]

The last interesting point to be made concerning stresses is the following: it is the total average stress o that is used in the force
equilibrium equations where it is usually the mechanical stress o™ (or o) that relates stress to strain (constitutive law).

Mechanical Stress and Strain Relationships
The relationships between the actual mechanical stress o™, the average mechanical stress o° the pore pressure p, and the
strains within the solid skeleton will be derived. In order to accomplish these definitions, strain energy relationships will be used.

First, the actual mechanical strain €™ and the average mechanical strain €* are defined as those strains resulting from the
application of o™ and o* respectively, in a dry unsaturated porous material. Since the fluid medium in the present derivation
is pyrolysis gas and not a liquid (like water or oil), then the two states of a dry unsaturated porous material and a wet saturated
porous material at ambient (zero) pressure are one in the same. This of course assumes that the presence of the pyrolysis gases
do not alter (in any appreciable way) the behavior of the solid material.

The definition of strain energy within a represéntative control volume (RCV) is defined in vector notation by

- flJale - [frre]s

0

Assuming stress is linearly related to strain (e.g., a linear stress-strain matrix C,,), then the total strain energy within the RCV is
given by

U = /[%(UE)TGG] v o= LeTev (12)

In the absence of pressure, the average mechanical stress o is related to the actual mechanical stress o™ by (see equations

(11)).

o = [I-W|o™ or o™ = [I-W| ' o® pore anisotropy

1 _ (13)
o = (1l—p)o™ or o™ = ——o° pore isotropy
(1-9p)
Substituting these stress definitions into equation (12), dropping the 1/2 factor, using equation (1c) to relate the solid skeleton
volume V, to the total volume V and noting that by definition, the actual mechanical strain €™ within the solid skeleton due to the
actual mechanical stress o™ produces the strain energy U = (o™)T e™ V,, leads to the equations which state that the average
mechanical strain e is related to the actual mechanical strain €™ by the following.

g™ [I-W]e® pore anisotropy
(1-¢) (14)

m a

€ = € pore isotropy

This equality for the pore isotropy case is also confirmed by the fact that both the average and actual strains are related to the same
displacements on the outer boundary of the RCV, and these strain-displacement relationships are simply kinematical, regardless of
the makeup of the RCV. The weight factor [I—W /(1 —¢) for the pore anisotropy case simply relates the relationship necessary
for the strain energy equality.



Stress-Strain Relationships

The average mechanical strain €® is related to the average mechanical stress o* (no pressure present) within the RCV by the
compliance or flexibility matrix D,, of the porous material. A subscript “m” will denote properties of the porous material. Therefore,
this relationship is given in both incremental and total form by

de* = D,, do® (15a)

e = D, o (15b)

The inverse of this strain-stress relationship is the stress-strain relationship, which relates average mechanical stress o* to average
mechanical strain €* by the stiffness matrix C,,, i.e.,

do® = C,, de* (16a)
0 = Cpe® (16b)
where C,, = D;'. The form of the incremental matrices D,, or C,, may be linear or nonlinear, with dependence upon

mechanical stress, pore pressure, temperature, etc., whereas the total matrices D,, or C,, is considered linear, with only a
dependence upon temperature, i.e.,
Dm = Dm(o'm,p,T) Cmn = Cm(amvva)

D, = D, (T) Cm = Cn(T)

The form of these matrices is presented in Appendix A, where the coefficients are expressed in terms of the usual engineering
constants. If the incremental matrices D, or C,, were linear, without dependence upon mechanical stress o™ or pressure p,
then the incremental form of these relationships could be integrated yielding the total form shown in equations (15b) and (16b).
Therefore, the following notation will be used to describe the differences between incremental and total forms of these relationships;

M - represents incremental properties where the coefficient matrices/vectors are nonlinear

M - represents total properties where the coefficient matrices/vectors are considered linear

The relationships between the actual mechanical strains €™ and actual mechanical stresses o™ within the solid skeleton are the
same as those stated above for the porous material. A subscript “s” will denote properties of the solid material. Therefore, the
solid skeleton material counterpart to equations (15) and (16) are

de™ = D,do™ €" = D,o™ (17a,b)

Il

(oli

do™ C, de™ o™ =

oE™ (18a, b)

The porous material stiffness matrix C,, may be related to the solid material stiffness matrix C, by substituting for the average
mechanical stress o from equation (13) and the average mechanical strain €* from equation (14) into the stress-strain relationship
expressed in equation (16b), and using the stress-strain relationship in equation (18b) to yield

[I-W|o™ = Cn,(1-¢)[I-W|'e™ = [I-W|C, e pore anisotropy

(1-p)o™ = G, €™ = (1-¢)C,e™ pore isotropy

Therefore, these equations yield ths following relationships between C,. and C,, namely

= 1 ~ ,
Cp = —[I-W|C,[I-W| pore anisotropy

=) (19a)
Cn = (1-¢) C, pore isotropy

or the inverse relationships
C,=(1-¢)[I-W|'Cp[T-W]|! pore anisotropy
- 1 - (1998)
C, = C,. pore isotropy
(1-¢)

Similarly, the relationship between the flexibility matrices D,, and D, may be found by using equations (13), (14), (15b) and
(16b) yielding
7



pore anisotropy
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- 1 = (20a)
D = D, pore isotropy
(1-¢)
or the inverse relationships
D, = _1 [1-W|D, [I-W] pore anisotropy
(1-¢) (200)
D, = (1—¢)D,, pore isotropy

These stress-strain and strain-stress relationships of the porous and solid material will now be used to develop the thermo-poro-

structural constitutive law of the porous material. It is interesting to note the relationships between D,, and D, and between C,,
and C, are given by the nondimensional diagonal weight vector [r| = [I-W]/(1 - ). Inreality, the properties of the solid
matrix and the porous matrix are quite different from the relationships outlined in equations (19) and (20), and must be determined
by experiment individually. This is caused partially by the nature of the tortuous paths of the pores, and the associated stress
concentration factors with these irregular shapes, etc.

Thermo-Poro-Structural Constitutive Law

The following relationships will be developed for the fotal stress and strain variables, with it being understood that the parallel
development for the corresponding incremental variables follows the same form.

The loads on the representative control volume (RCV) are assumed to be decomposed into separate load sets, where each type
of load is applied independently from the others. Towards this end, the average mechanical stress and the pore pressure will be
used, since the decomposition expressed by equation (10) separates these two loads such that the pore pressure is hydrostatic
throughout, i.e., both on the inside boundary and the outer boundary, constituting a single hydrostatic pressure p on the solid
skeleton within the RCV. The average mechanical stress is the non-pressure component of the total stress acting on the outer
boundary of the RCV. This particular stress (force) decomposition permits the strain response to be equally decomposed into
two components, one associated with the hydrostatic pressure p, called the pressure strain €?” and the other associated with
the average mechanical stress o called the mechanical strain e* (= €™). In addition to the average mechanical stress and
pore pressure, there is a thermal strain €** associated with a temperature change and there could possibly be a creep strain e°

associated with stress and strain loading rates. When the deformations are infinitesimal (the case being dealt with here), the total
strain may be expressed as the sum of the mechanical, pressure, thermal and creep strains by

e = €™(0") + (p) + €(T) + €(T,1) (21)

where the notation (o¢), (p), (T') and (T,t) indicates that these strains are functions of mechanical stress, pressure, temperature
and time. The reason these strains may be added together is that infinitesimal strains are related linearly to the displacements,
and the total displacements are just the sum of the incremental displacements caused by the different loads (mechanical stress,
presure, temperature, etc.).

The relationships between o*,¢*,0™, and €™ were given by equations (13) through (19). To complete the thermo-poro-structural
derivation, expressions are needed for the pressure strain €?” and the thermal strain e**. One of the more important points to be
emphasized here is that the pressure and the temperature act uniformly on the solid skeleton within the control volume, i.e., on
the solid volume within the RCV. They also act equally on the gas within the pore volume within the RCV, but we are presently
interested in the solid response. This is easily seen for pressure in Figures 2 and 3. Therefore, the constitutive relationships
between pressure strain and pressure, and thermal strain and temperature only involve the properties of the solid skeleton. With
this in mind, and referencing equation (17b) above, the pressure strain and thermal strain are defined by

e’"(p) = -D;ép (22a)
Eth(T) — as T (22b)

;Nhere a, are the total coefficients of linear thermal expansion of the solid phase of the material, and are related to the instantaneous
orm «, via

T
a, T = / a,(T)dT (22¢)

0

Also, since pressure was defined as positive in compression, the minus sign occurs in equation (22a) since all of the strains

are, by definition, positive when the displacements are positive. The pressure p and temperature T in equations (22) represents

the pressure above some reference pressure p, and the temperature T above some reference temperature T,. Solving for the

mechanical strain €™ = €* in equation (21), and substituting the resulting expression into equation (16b), and then substituting
8



definitions (22) for €?” and €** into this equation yields the desired constitutive law for the thermo-poro-structural relationship,
namely

0 = Cp(€e + D,6p — a,T — €) (23a)

The corresponding incremental form of this equation is
do® = C,(de + D,6dp — a,dT — de°) (23b)

Dividing through equation (27b) by an incremental time dt¢ yields the corresponding rate from, namely

do" Oe dp oT 0e€°
- hid B e 23
5 cm<at + Db — @ 6t> (23¢)

The interesting point to observe in these equations is the presence of mechanical properties for both the porous material (C,,)
and the solid phase of the material (D,, «, ), both of which may be nonlinear (in which case, the incremental or rate form (23b) or
(23c) would have to be used).

Effective Stress Concept

Before leaving this discussion of different stress measures, a word must be made concerning what is commonly referred to in
the literature as the effective stress. The effective stress appears to take many different forms, and therefore seems confusing.
For the present derivation, its definition still needs to be determined. Since the theory and the resulting equations do not depend
upon what form the effective stress takes, this question may be left open for the present. Remember, the definition of this pseudo
variable is an artifact, and has nothing to due with the physics. It was introduced into the poro-elasticity formulation to simplify the
governing equations, and to allow analytical solutions from the field of solid elasticity theory to be used for solutions to poro-elasticity
problems. Its definition is usually given by (e.g., see References [16] or [19])

The effective stress concept is that the response of a saturated porous material may be described by the response law
for the dry porous material when the applied stress is replaced by the effective stress.

Following this concept for the definition of the effective stress, equation (23a) is rewritten as

o — émﬁsﬁp = ém(e - a, T — €)

Now, all of the terms on the left hand side of this equation may be defined as the effective stress o¢, thereby reducing this
equation to an equivalent thermo-elasticity equation (consult any textbook on thermo-elasticity theory), i.e.,

of = o — émﬁstsp (24a)
p

o = o° + C,D, (24b)

When substituting equation (24b) into the average mechanical stress definition as expressed in equation (10), the following
results.
o = o - |[I - C,D,|ép

where [I] is the unit diagonal matrix (see equations (3)). Therefore, the stress definition given by this equation defines yet
another parameter, called the anisotropic effective stress parameter(s) x given by

(k] = [1 - €.D,] (250)
Using definition (25a), the effective stress equation becomes
o = o — [k]ép (250)
Therefore, equations (25a) and (25b) define the effective stress o° as used in the present derivation. This definition is the

same as that given by Carrol [19] and by Carrol & Katsube [22]. When the material is isotropic, then the anisotropic effective
stress parameter « becomes (see Appendix A for the relationships between anisotropic and isotropic properties)

(k] = (1—'2—’:) (1] (25¢)

where k,, and k, are the bulk moduli of the porous material and the solid skeleton, respectively. This form (of the parameter
) was also given by Biot & Willis [15] and later by Nur & Byerlee [16]. This form does not involve the famous Terzaghi effective
9



stress (see [10] and [11]). The particular role played by the effective stress definition given in equations (25) has yet to be
shown, and will not be elaborated upon further here.

This concludes the derivation of the thermo-poro-structural equations governing the deformational characteristics of a porous
material loaded by mechanical stresses, pore pressure and thermal gradients.

Nonlinear Pyrolysis Diffusion Equations

The equation of continuity of mass which governs the generation and flow of the pyrolysis gas within an ablating nozzle liner
material is given by

dm, ; o,
at ¥ g} Bt
storage diffusion generation (26)

where m, is the mass of the gas in the representative control volume (RCV), m, is the gas mass flux, m, is the mass of the
gas generated due to pyrolysis and ¢ is the time variable. The first term represents the rate at which gas mass is stored within
the RCV. The second term represents the net flux of gas entering and leaving the RCV (per unit time). The sum of these
two terms must equal the last term, the rate at which gas is being generated within the RCV. The three independent variables
used to describe the dependence of m, are gas pressure p, gas (and solid) temperature 7, and strain e. Therefore,
my = my(p,T,€). The rate of gas generation m, is a function of the “extent of pyrolysis™ or “degree of char’ 3, which
varies from 0 (virgin material) to 1 (fully charred material), and will be explained below. Each of the three terms in equation
(26) will be developed next.

Mass Storage Term

The mass of the gas m, in a deforming RCV is given, by definition, as the density of the gas p, times the volume occupied
by the gas, namely, the pore volume 1, i.e.,

my = pgVp (27)
Therefore, the time rate of change of m, is given by
Om, . Op oV . 1 dp 130V,
= V. 229 -2 = — - L P 28
at A TR Y Pa¥ |Pp, 0t  V ot (28)

where equation (1b) which relates the instantaneous pore volume ¥, to the instantaneous total volume V' and porosity ¢ has
been used. The main task in the present derivation is to determine the time rate of change of the pore volume V,,, especially
in the presence of pressure p, temperature T, and mechanical strain e. The main coupling between pore pressure and
mechanical deformations exists through this term. Consider the condition where pressure builds up resulting in a tendency
to open up the porosity and permeability, which in turn allows the gas flow to increase and the pressure to decrease. An
equilibrium condition between pressure and porosity/permeability exists somewhere between these two states.

Taking the time derivative of total volume as expressed in equation (1a) and solving for 9V,/dt yields

oV, v av,
3t~ 81 o1 (29}

However, the present derivation treats the strain € in the RCV as an independent variable (along with the pressure p and
temperature T'). Therefore, if expressions are generated for the time rate of change of the total volume V' and the solid
volume V, in terms of their respective dilatational strain rates, then the time rate of change of the pore volume will be known.

Any textbook on solid mechanics will show that for infinitesimal strain definitions, the change in the total volume of the
representative control volume (RCV) may be related to the dilatational (or volumetric) strain e, of that total volume by
V = ,+6V = V,(l4e,) = Vo(1+6Te) (30)

where e is the total strain vector (of the total control volume, i.e., the RCV) and § is the Kronecker delta operation which simply
sums the direct strain components of € (see equations (3)). Also, V, is the initial total volume and is considered constant (for
purposes of taking derivatives). Taking the time derivative of the total volume as expressed in equation (30) yields

%(V) - %[v;(uﬂe)] = v;aT% (31)

Therefore, the only change of the total volume is due to the mechanical straining of that volume. Any changes due to chemical
or pyrolysis effects occur within the RCV thereby preserving ’%t(w)e total volume.



The solid phase of the material has similar mechanical straining relationships to those presented above for the total volume,
with the only difference being the reference volume measure. However, there is an additional pyrolysis event that contributes
to the time rate of change of the solid volume V,. For the purpose of determining the time rate of change of the solid volume,
the pyrolysis event will be briefly discussed, with the bulk of this discussion to be covered in detail later.

When pyrolysis occurs, the solid gives up mass (and volume) to the gas. The independent variable used to measure the
“extent of pyrolysis™ is 3, as mentioned in the discussion following equation (26). At the same time that the solid volume V,
decreases (due to pyrolysis mass loss), an equal and opposite increase occurs in the pore volume V;, thereby preserving the
total volume within the RCV. This may be expressed by

v/ v’
I TEY (32)

where the superscript 3 refers to the dependence upon the extent of pyrolysis. Therefore, this term will be included in the
current derivation for the time rate of change of the solid volume V,, but will not be developed until later.

With this in mind, the total change in the solid volume may be viewed as the sum of a mechanical straining part and a pyrolysis
part. The mechanical straining part is found by repeating definitions (30) and (31) for the solid volume, with e2 = 57, being
the dilatational strain in the solid skeleton and V,, being the initial solid volume. The pyrolysis part is given by the term V5.
The instantaneous solid volume V, is therefore given by

Vi = Vo + 6V + VP =V, <1+5T€s) + Vf

Taking the time derivative of the solid volume as expressed by the above equation yields

8 (. . N 5
5 (0) = Vs 5+ 22

However, the original solid volume V,, is related to the original total volume V, by equation (1c). Making the appropriate
substitution in the above equation yields

7 0€s avpP

5t T ot (33)

2(%) = na-¢s

Substituting equations (31) and (33) into equation (29), and replacing the time rate of change of the solid volume with the time
rate of change of the pore volume (as per equation (32)) leads to

8V, C r[Be de,]  OVP
B9t 2d' g ~ -9 %7 | T B

Bt - o (34)

Since the total strain ¢ is an independent variable, the strain in the solid phase of the material ¢, must now be expressed in
terms of the total strain € (and also p and T).

As stated earlier (see the discussion before equation (21)), the mechanical stress o*, pore pressure p and temperature T
loads on the solid phase of the material may be applied independently from one another. Remember, equation (10) implies
that the pressure component of load is applied to all of the solid skeleton boundaries, both internal and external. The average
mechanical stress o is the non-pressure component of the total load and is applied only to the outer boundary of the RCV.
With this in mind, then the total strain within the solid phase of the material may be given in total strain form and strain rate

form by

Il

€ e + & + € (35a)

de,  Oe N derm  Oeth
at ot 5t T

(35b)

The strain €7 due to the average mechanical stress o is given by €, i.e., the strain in the solid skeleton. Therefore, using
the first of equations (14) to express € interms of €™, and equation (17b) to express €™ interms of o™, and finally equation
(13) to express o™ in terms of o leads to (for the pore anisotropy case)

€ =€ = (1-¢)[I-W|'e™ = (1-9)[I-W|'D,0™ = (1-¢)[I-W|'D,[I-W| 'o®

s

or when expressed in rate form, this equation becomes (for both pore geometry cases)

366; = (1-¢)[I -W|'D,[1-W]|! aait pore anisotropy
36
deg 1 0o e

pore isotropy
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