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PREFACE

The papers which are contained in this book were presented at the IBM Europe Institute
Workshop on Large Scale Eigenvalue Problems which was held at Oberlech, Austria, July 8-12,
1985. This Workshop was one in a series of summer workshops sponsored by the IBM World
~T;'ade Corporation for European scientists.

The unifying theme for this Workshop was ‘Large Scale Eigenvalue Problems’. The papers
contained in this volume are representative of the broad spectrum of current research on such

problems. The papers fall in four principal categories:

(1) Novel algorithms for solving large eigenvalue problems

(2) Use of novel computer architectures , vector and parallel

(3) Computationally-relevant theoretical analyses

(4) Science and engineering problems where large scale eigenelement computations have pro-
vided new insight.

Most of the papers in this volume are readily accessible to the reader who has some know-
- ledge of mathematics. A few of the papers require more mathematical knowledge. In each case,
additional papers on these subjects are available from the authors of these papers. The inter-
ested reader can obtain such reprints by writing to the appropriate authors. A complete list of
the names and addresses of the authors is iﬂcluded at the end of this book. A corresponding list
of the Workshop speakers who were not able to submit papers is also included. Interested
readers should consult both lists.

Jane Cullum

Ralph A. Willoughby
Program Organizers
April 1986
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INTRODUCTION TO PROCEEDINGS

Jane Cullum
Ralph A, Willoughby

IBM T. J. Watson Research Center
Yorktown Heights, New York 10598
USA

We provide a brief summary of each paper contained in this volume, provide
some indications of the relationships between these papers, and provide a
few additional references for the interested reader.

The papers included in this volume can be classified into the following four categories.

(1) Novel algorithms for solving large eigenvalue problems
See the papers by Zhou and Ruhe, by Kerner, and by Cullum and Willoughby.

{2) Use of novel architectures for solviﬁg eigenvalue problems

See the papers by Dongarra and Sorensen, by Ipsen and Saad, and by Bischof and Van Loan.
The paper by Dongarra and Sorensen addresses both the question of restructuring the
EISPACK library routines [1977] of restructuring the LINPACK library routines [1979] for

novel architectures.

(3) Computationally-relevant theoretical analyses
See the papers by Demmel and Kagstrom, by Chatelin, and by Ericsson,

(4) Examples from science and engineering where large scale eigenvalue and eigenvector *
. computations have provided new insight into fundamental properties and characteristics
of physical systems, both those existing in nature and those which have been constructed
artificially.
See the papers by Grimes, Lewis, and Simon, by Van Ness, by Kerner, by Moro and Freed, and
by Haller and Koppel.
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J. Cullum and R.A. Willoughby

Most of the currently active areas of research in modal analysis are represented in this vol-
ume. With the exception of the three papers dealing with novel architectures which are pre-
sented first, the papers are presented in an ordering which takes us from the ’easiest’ problems,
the real symmetric eigenvalue problems, to the most difficult ones, the computation of the

Kronecker canonical forms of general matrix pencils.

Many engineering and scientific applications yield very large matrices. Historically, the sizes
of the matrices which must be used have grown as the computing power has grown. Therefore,
there is much interest in understanding how to exploit the new vector and parailel architectures
in such computations. The first paper by Dongarra and Sorensen addresses two basic questions
dealing with such architectures. First, they look at the types of computers which are currently
available and at those which should be available within the next few years. They then examine
the question, how do we exploit such ?rc‘hitectures for linear algebra computations? They in-
clude introductory descriptions of classiﬁcéiic;ns for the various arithmetic engines and storage
hierarchies. This discussion is followed by a table of advanced computers, proposed and exist-

ing, together with tables of characteristics of these machines.

Dongarra and Sorensen include some discussion of data communication and how that relates
to algorithm performance. The cost of algorithm execution can be dominated by the amount
of memory traffic rather than by the number of floating point operations involved. A perform-
ance classification is given for algorithms on a vector computer; scalar, vector, and super-vector.
Data management and synchronization add to the complications in designing algorithms for
parallel computers,

The authors also address such issues as program complexity, robustness, ease of use, and
portability, each of which plays an important role in the analysis. Certain basic vector and
matrix-vector operations are fundamental to many linear algebra algorithms and these are ex-
amined very carefully. The authors contend that it is possible to achieve a reasonable fraction
of the peak performance on a wide variety of different architectures through the use of program
modules that handle certain basic procedures. These matrix-vector modules form an excellent
basis for constructing linear algebra programs for vector and parallel processors. With this phi-

losophy, the machine dependent code is isolated to a few modules. The basic routines provided
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in the linear equation solving package, LINPACK [1979], and in the EISPACK library [1977]
for eigenvalue and eigenvector computations, achieve vector but not super-vector performance.

The paper by Ipsen and Saad presents a brief survey of recent research on multiprocessor
(parallel) architectures and on algorithms for numerical linear algebra computations which take
advantage of such architectures. The emphasis is on algorithms for solving symmetric
eigenvalue problems. Basic terminology is introduced and data communication problems such
as start-up times and synchronization are discussed. Three loosely coupled architectures; a

processor ring, a two-dimensional processor grid and the hypercube are considered.

The paper by Bischof and Van Loan looks at one of the parallel architectures which is
available today, the LCAP configuration designed by Enrico Clementi of IBM and at the prob-
lem of implementing a block Jacobi, singular value decomposition algorithm on LCAP. LCAP
consists of ten Floating Point Systems FPS-164/Max array processors connected in a ring
structure via large bulk memories. The algorithm is a block generalization of a parallel Jacobi
scheme which appeared in the paper by Brent, Luk, and Van Loan [1985]. The parallel proce-
dure developed in the Bischof and Van Loan paper could also be applied to the real symmetric
eigenvalue problem. The authors however did not achieve the speedups which others had pre-
dicted. This paper is a good illustration of the difficulties and considerations encountered in
translating an idea for a parallel algorithm into a practical procedure.

Many of the papers in this volume use procedures which rest upon the so-called Lanczos
recursion. For more details and background information on this recursion, the reader is referred
to Parlett [ 1980] and Cullum and Willougby [1985]. Both of these books contain bibliographies
with references to much of the recent research on Lanczos procedures. A brief survey of recent

research in this area is contained in Cullum and Willoughby [1985b].

The paper by Wyatt and Scott provides an example of the use of a real symmetric Lanczos
procedure. The objective is to compute time dependent quantal transition probabilities. These
transition probabilitics are obtainable from differences of survival amplitudes for surviving in a
particular state at time t given that we started in that state at time t=0. These survival aml;li-
tudes can be computed if all of the eigenvectors of an associated Hamiltonian operator are

known. However, an eigenvector decomposition of this operator cannot be obtained easily.
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The Lanczos algorithm provides real symmetric tridiagonal representations of this Hamiltonian
which reduce (at least theoretically) the survival amplitude computations to computations of the
eigenvalues of tridiagonal matrices and computations of the first components of the eigenvectors
of these tridiagonal matrices. Both of these computations are reasonabte. Specifically, Wyatt .”
and Scott compute

M
Bl sder =i
(11" > si. exp #

a=1

where M is the size of the Lanczos matrix being used; s,, denotes the first component of the

eigenvector of that tridiagonal matrix corresponding to the eigenvalue E .

Wyatt and Scott use the Lanczos recursion with no reorthgonalization because they have
very large matrices and therefore the amount of computer storage which would be required by
the Lanczos methods which require reorthogonalization would be too large. However, if the
Lanczos vectors are not reorthogonalized, then extra or 'spurious’ eigerv2™es ~an avpear
among the eigenvalues of the Lanczos matrices. These are not genuine representations of the
eigenvalues of the original matrix, and these eigenvalues must be handled appropriately if the
results are to have any validity. Such eigenvalues can however be identified very easily, see
Cullum and Willoughby [1985], and in earlier papers Wyatt and coauthors were using this
identification test. However, the main point of this current paper is that for their particular ap-
plication it is not necessary to sort these Lanczos eigenvalues. All of the computed quantities
can be used in their computations and they still get correct results. They demonstrate this nu-
merically. A partial explanation for this follows directly from the charagtcrizalion of these
spurious eigenvalues given in Cullum and Willoughby [1985]. The spurious’ eigenvalues are
eigenvalues of a particular submatrix of the Lanczos matrix being considered and because of this
the first components of their eigenvectors are pathologically small. Therefore, their contrib-
utions to the sum in Eqn.(1.1) are pathologically small.

Algorithms exist for computing eigenvidnes of large, real symmetric generalized eigenvalue
problems Ax = ABx where A and B are real symmetric and B is positive definite. However,
. there are many cpen guestions regarding this problem when neither A nor B is not definite.
Gmnes Lewis and Simon focus on this problem. They first provide a survey of the types of

eigenvalue/eigenvector problems encountered in structural enginecring problems. They then
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discuss extensions of procedures designed for the standard real symmetric eigenvalue problem
to such problems. When B is not definite, these ’symmetric’ problems are genuinely nonsym-
metric and many numerical difficulties can be experienced in trying to solve them. Unfortu-
nately, in many structural problems, B is only positive semidefinite.

Grimes‘; Lewis and Simon outline the two most common classes of structural engineering
problems, vibration and buckling analyses. In vibration analyses, the higher frequency modes
of vibration are not important because it is unlikely that they will be excited. In buckling ana-
lyses usually only the smallest positive ‘eigenvalue and corresponding eigenvector are required.
Because of the slow convergence of such eigenvalues in the numerical algorithms designed thus
far, it is typical to factor one or more of the matrices involved in the eigenvalue computations
and to use such factorizations to transform the desired eigenvalues into eigenvalues with domi-
nant magnitudes. When matrices A — oB are factored, the method being used is called a shift
and invert method.

Grimes, Lewis, and Simon also list some of the practical considerations which must be faced
by any numerical analyst designing algorithms which are to be used within the constraints of
structural engineering packages. For example, typically there are restrictions on the way the
required data is stored and can be accessed. For this reason block versions of modal algorithms
have a number of desirable features for structural enginéering calculations. A detailed dis-
cussion of a block Lanczos procedure for the problem Ax = ABx, where A and B are real sym-
metric and B is positive semidefinite, will appear shortly. See reference 7 in the Grimes, Lewis
and Simon paper. The authors point out that in some situations it is necessary to use a model
which involves large nonsymmetric matrices and/or solve nonlinear eigenvalue problems.
However, satisfactory eigenvalue procedures for these nonsymmetric structural problems have

not yet been devised. This is an open area for research.
¥

.

The paper by Ericsson derives some of the computationally-important theoretical proper‘ties
of generalized eigenvalue problems Kx = AMx, where K and M are real symmetric matrices, In
the first part of his paper he develops the analysis which he needs for examining three types of
procedures for computing eigenvaluss: (1) Inverse Iteration; (2) Power Methods; and (3)
Lanczos Methods. In most of his paper he assumes that K is 2 nonsingular matrix and that the

penci! of matrices (X°— AM) is nonsingular. Equivalently, this means that K and M do not have
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a common null vector. He proves however, that any theorem which is valid under those as-
sumptions must also be valid when K is singular so that there is no loss of generality in his ar-
guments. '

Under these conditions these generalized problems can behave very nonsymmetrically and
Ericsson illustrates that type of behavior with examples. He then focuses on the problem for
M a positive semidefinite matrix. This type of problem is encountered frequently in structural
engineering problems. He uses the analysis which he has developed to look at the ability of the
three procedures listed above to compute good approximations to the eigenvectors of the given
generalized problem. This analysis points out a basic difficulty with both Lanczos methods and
with power methods, nameiy keeping the eigenvector approximations in the proper part of the
space. Since M is singular, the generalized eigenvalue problem has infinite eigenvalues. If the
sfaning vector in the Lanczos procedure contains a nonzero projection on the subspace spanned
by the eigenvectors corresponding to these infinite eigenvalues, then this projection may grow
and produce significant errors in the resulting Ritz vectors computed. This is a serious problem
which must be d‘eall with numerically. Ericsson also shows that this problem can happen when
M is nonsingular but very ill-conditioned. He also addresses the duestion of obtaining error es-
timates for computed Ritz vectors in the case that M is singular.

As mentioned in the Grimes, Lewis and Simon paper, a more accurate representation of a
particular structural problem may require the soh&ion of a nonlinear eigenvalue problem: Find
u and A such that G(u, A) = 0 where G is a nonlinear vector function, u is a vector of the same

dimension, and A is a scalar.

Zhou and.Ruhe examine such problems, not only in the context of solving nonlinear
eigenvalue problems, but as a general path following problem. Typically, the manifold of sol-
utions consists of a curve ¢r path as illustrated in several figures in this paper.A Bifurcation points
in this curve, places where several paths meet, and turning points, where the curve has the
hyperplane A = ¢ (c constant) are of interest. These are points where the Jacobian of G with
respect to u is singular. In the linear problem there is 2 bifurcation point at each eigenvalue,
They propose a modification to the Euler-Newton path following algorithm which uses the sol-
ution of a linear eigenproblem to give both a prediction of the position of singular points and the
direction of btfurcanng branches. Several examples illustrating this idea are included.
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The next level of difficulty in dealing with algorithms for solving eigenvalue problems is to
design procedures which are applicable to complex symmetric problems. For diagonalizable,
" complex symmetric matrices one can write down a Lanczos recursion which is completely anal-
ogous to the real symmetric recursion. The left and the right eigenvectors of a complex sym-
metric matrix are identical so only one set of Lanczos vectors has to be generated. As is shown
in Wilkinson [1965], in the general nonsymmetric case, it is necessary to replace the single
Lanczos recursion which is used in the real symmetric case by a set of two such recursions. One
of these recursions uses the given matrix and the other recursion uses the transpose of the given
matrix. The papers by Haller and Koppel and by Moro and Freed describe applications where
eigenvalue and eigenvector computations are used to obtain basic physical properties of mblec-
ular systems and the matrices involved are complex symmetric. Haller and Koppel consider both
real symmetric and complex symmetric matrices.

Moro and Freed are studying molecular motion. The information obtained from
spectroscopic or scattering techniques yields only macroscopic responses to external perturbing
influences. The objective in these studies is however, to unde;stand the basic mechanisms con-
trolling the molecular motion. Moro and Freed describe the connegtions between experimental
measurements, spectral density computations and the identification of these basic mechanisms.
In practice, different theoretical models for the underlying mechanisms are assumed and then
comparisons of the resulting macroscopic quantities are made with experimental measurements.

These comparisons require spectral densities.

Under certain assumptions, the computations of the spectral densities can be reduced to the
computation of the effect of the resolvent of a certain operator on certain vectors. The form
of the operator and of the particular vectors depends upon the system being studied. The au-
thors develop these relationships. They then show how the Lanczos algorithm can be used to
obtain a 'tridiagonal’ representation of the operator, and how this representation can be used to
reduce the required spectral density computations to computations of continued fractions whose
coefficients are simply the eatries of the tridiagonal matrices generated by the Lanczos proce-

dure,

The main part of the Moro and Freed paper considers problems where the operator can be
symmetrized so that it is either a real symmetric or a complex symmetric operator. In both of
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these cases the Lanczos recursions reduce to @ single recursion and the Lanczos tridiagonal
matrices are symmetric, either real symmetric or complex symmetric. In the last section of their

paper the authors extend some of their ideas to more general nonsymmetric operators.

Haller and Koppel are also looking at problems in molecular dynamics. They have attacked
the very difficuit and interesting problem of modeling the vibronic coupling in polyatomic mol-
ecules. They have obtained a model which reproduces gross features of complex experimental
spectra. From this they can make several inferences. The basic computation which is required
is the determination of the spectral distribution. Because of the sizes of the matrices involved,
it is not possible to use standard eigenelement algorithms for these computations. The Lanczos
algorithm with no reorthgonalization plays a critical role in their computations. In this paper the
authors consider matrices up to size 40800. However, they want to consider matrices of size

up to 105, They use the computed results to support their theoretical models.

Electric power systems problems yield some of the most difficult nonsymmetric
eigenvalue/eigenvector problems. Van Ness summarizes and illustrates these types of problems.
Modern power systems conslist of many generating stations and load centers connected together
by an electrical transmission system. Small disturbances in such systems can be studied by using
eigenanalysis on linearizations of the system equations- around some nominal operating state.
The objective of this analysis is to determine whether or not th; linearized system has any
eigenvalues with positive real parts, and to determine the sensitivities of such eigenvalues and
of the eigenvalues with small negative real parts, to perturbations of parameters in the model.
Sensitivity analysis requires the computation of eigenvectors. A history of the study of several
oscillation problems in power systems is presented.

Nonsymmetric problems are considered in the paper by Cullum and Willoughby. The ob-
jective is to devise a Lanczos procedure for computing eigenvalues of large, sparse,
diagonalizable, nonsymmetric matrices. The authors propose a iwo-sided Lanczos procedure
with no rcorthogonalization which uses both the given matrix A and its transpose. Two sets of
Lanczos vectors are generated and the Lanczos matrices are chosen such that they are compiex
symmetric and tridiagonal matrices. In exact arithmetic the Lanczos vectors generated are
biorthogonal. A generalization of the QL algorithm is used to compute the eigenvaiues of these
matrices. A generalization of the identification test for spurious eigenvaluss which was used in
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. the case of real symmetric problems is found to apply equally well here. Several properties of -
complex symmetric tridiagonal matrices are derived. Numerical results on matrices of size n =
104 to size n = 2961 demonsmtethemengthsofthispmcedumaﬁdthetypeofconvergence
which can be expected. For the problems up to size n = 656, the Lanczos results are compared
«directly with the corresponding results obtained using the relevant EISPACK subroutines. All
arithmetic is complex even if the starting matrix is real. Because there is no reorthogonalization,
this procedure can be used on very large problems and can be used to compute more than just
a few of the extreme eigenvalues of largest magnitude.

Kerner addresses the question of r.he stability of plasmals which are confined magnetically.
Such plasmas play a key role in the research on controlled nuclear fusion. T;ns is an application
where large scale eigenvalue and eigenvector computations provide new insight into basic
physical behavior. The most dangerous instabilities in a plasma are macroseopic in nature and
can be described by the basic resistive magnetohydrodynamic model. A well-chosen

- discretization of this model transforms this model into generalized eigenvalue problems:
Ax = ABx where A-is a general matrix and B is a real symmetric and positive definite matrix.
The eigenvalues and eigenvectors of these systems proﬁde knowledge about the behavior of the
plasma. Of particular interest are the Alfven modes, and the author studies the effects of the
resistivity upon these modes and upon the sound modes. These eigenvalues are found to lie on
curves in the plane, and the eigenvalue and eigenvector computations are performed by using a
path following technigue which uses inverse iteration and a continuation method. Convergence
is demonstrated by performing these computations over finer mesh sizes.

Central to the successful computation of eigenelements are both the theoretical stability of
the given problem with respect to perturbations in the dafa and the numerical stability of the
algorithm being used to perform the computations. Chatelin addresses both questions. She fo-
cuses on defective eigenvalues. Only multiple eigenvalues can be defective, An eigenvalue is
defective if its multiplicity as a root of the characteristic polynomial of the given mau}x is larger

“than the dimension of the subspace of eigenvectors associated with that eigenvalue.

Chatslin first looks at the question of condition numbers of eigenvaluss and of invariant

subspaces. She then shows that the method of simultaneous inverse iteration is not stable if the,
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~ subspace being computed corresponds to a defective eigenvalue. She proposes a particular
modification of a block Newton method which is stable.

Demmel and Kagstrom present algorithms and error bounds fer computing the Kronecker
canonical form (KCF) of matrix pencils, A — AB, where A and B can be rectangular matrices.
For the standard eigenvalue problem, Ax = Ax, the Jordan canonical form (JCF) provides in-
sight into the behavior of the system under perturbations in the matrix A. The KCF is a gener-
alization of the JCF which can be used to provide similar insight into the generalized eigenvalue
problem Ax = ABx and into general systems involving pencils of matrices A — AB where A and
B may be rectangular. The KCF is obtained by applying left and right nonsingular transf-
ormations which simultaneously reduce the A and B'matrices to block diagonal matrices. Each
of these diagonal blocks may have one of three forms. These forms together with the matrix
transformations characterize the subspace associated with each block.

Computing features of the KCIf can be an ill-pos;d problem; that is, small changes in the
data may result in large changes in the answers. By restricting the class of perturbations allowed,
Demmel and Kagstrom look at the question of how much the Kronecker structure can change
when perturbations are made in the matrices. These perturbations can occur because of
roundoff errors or because of uncertainties in the input data. They then analyze the errors in-
curred in algorithms for computing Kronecker structures. They are particularly interested in
singular pencils, for example when the determinant of (A — AB) = 0; P:e error bounds ob-
tained can be used for determining the accuracy of computed Kronecker features. Their results
have applications to control and linear systems and these relationships are discussed. Wilkinson
[1979] provides additional introductory comments.

Several other talks were given at the Austrian Workshop which, for a variety of reasons, are
not included in this volaume. In particular, some of them have already been published elsewhere.
G. W. Stewart opened the workshop with a survey of the basic theory and algorithms used in
eigenelement analysis and computation. Much of this material can be found, for example, in his
book Stewart [1973] and in the book by Golub and Van Loan [1983]. Later in the Workshop
program, Stewart presented an algorithm for doing simultaneous iterations on the ring processor,
ZMOB, which resides at the University of Maryland.
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Kosal Pandey described the Hermitian eigenelement problems which arise in his studies of
surface properties of various materials. His results are directly applicable to semiconductor
materials. Physical and chemical properties of a surface are determined by its surface structure.
Two basic questions addressed are: (1) Determine the atomic structure at the surfaces of such
materials; and (2) Determine basic physical characteristics such as how the surface will react
with various chemicals. Pandey obtains this type of information by computing eigenfunctions
of Schrodinger’s equation. Using these computations, he has shown that the accepted buckling
reconstruction mechanism for the configuration of atoms at surfaces is valid only for heteropolar
surfaces. He has proposed an alternative = — bonding model for homopolar surfaces which fits
well with both theoretical arguments and with experimental data. For more details on this work
the reader is referred to Pandey [1983, 1983b].

In some applications it is necessary to compute the eigenelements of matrices obtained by
simple modifications of a given matrix, for example, a rank one modification. In other applica-
tions one or more of the eigenvalues of a system are specified a priori and the user is asked to
determine a matrix with those eigenvalues. Gene Golub surveyed some of the work on such
problems. Much of his talk is contained in the references Golub [1973] and Boley and Golub
[1978].

A key question in any eigenelement computation is how do we know that the answers ob-
tained are meaningful? Beresford Parlett presented the material contained in the paper Kahan,
Parlett, and Jiang [1982.] This paper inc}udes error estimates for nonsymmetric problems which
are applicable, for example, to Lanczos algorithms for nonsymmetric problems. Parlett gave two
talks. The second talk surveyed the recent research on the question of maintaining semi-
orthogonality of the Lanczos vectors generated by a Lanczos recursion. The interested reader
can find much of this material in the book, Parlett [1980].

A complete list of the authors and coauthors with their full addresses is included at the be-
ginning of this book. A corresponding list of the speakers who do not have papers in this volume
is contained at the end of this book. The interested reader can obtain additional references by
contacting the authors and speakers directly.



