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CONTINUUM MECHANICS

This is a modern textbook for courses in continuum mechanics. It
provides both the theoretical framework and the numerical meth-
ods required to model the behavior of continuous materials. This
self-contained textbook is tailored for advanced undergraduate or first-
year graduate students with numerous step-by-step derivations and
worked-out examples. The author presents both the general contin-
uum theory and the mathematics needed to apply it in practice. The
derivation of constitutive models for ideal gases, fluids, solids, and
biological materials and the numerical methods required to solve the
resulting differential equations are also detailed. Specifically, the text
presents the theory and numerical implementation for the finite dif-
ference and the finite element methods in the Matlab® programming
language. It includes thirteen detailed Matlab® programs illustrating
how constitutive models are used in practice.

Dr. Franco M. Capaldi received his PhD in Mechanical Engineering
from the Massachusetts Institute of Technology. He taught Mechanical
Engineering at Drexel University from 2006 to 2011. He is currently
an Associate Professor of Civil and Mechanical Engineering at
Merrimack College. His research focuses on the modeling of biological
and polymeric materials at various length scales.
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Preface

This textbook is designed to give students an understanding and appreciation of
continuum-level material modeling. The mathematics and continuum framework are
presented as a tool for characterizing and then predicting the response of materials.
The textbook attempts to make the connection between experimental observation
and model development in order to put continuum-level modeling into a practical
context. This comprehensive treatment of continuum mechanics gives students an
appreciation for the manner in which the continuum theory is applied in practice and
for the limitations and nuances of constitutive modeling.

This book is intended as a text for both an introductory continuum mechanics
course and a second course in constitutive modeling of materials. The objective of
this text is to demonstrate the application of continuum mechanics to the modeling of
material behavior. Specifically, the text focuses on developing, parameterizing, and
numerically solving constitutive equations for various types of materials. The text is
designed to aid students who lack exposure to tensor algebra, tensor calculus, and/or
numerical methods. This text provides step-by-step derivations as well as solutions
to example problems, allowing a student to follow the logic without being lost in the
mathematics.

The first half of the textbook covers notation, mathematics, the general prin-
ciples of continuum mechanics, and constitutive modeling. The second half applies
these theoretical concepts to different material classes. Specifically, each application
covers experimental characterization, constitutive model development, derivation
of governing equations, and numerical solution of the governing equations. For
each material application, the text begins with the experimental observations,
which outline the behavior of the material and must be captured by the mate-
rial model. Next, we formulate the continuum model for the material and present
general constitutive equations. These equations often contain parameters that must
be determined experimentally. Therefore, the textbook has a chapter covering the
theory and application of experimental error analysis and simple curve fitting. For
each material class, the continuum model is then applied to a specific application
and the resulting differential equations are solved numerically. Complete descrip-
tions of the finite difference and finite element methods are included. Numerical
solutions are implemented in Matlab® and provided in the text along with flow
charts illustrating the logic in the Matlab® scripts.
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Mathematics

As scientists and engineers, we make sense of the world around us through
observation and experimentation. Using mathematics, we attempt to describe our
observations and make useful predictions based on these observations. For example,
a simple experimental observation that the distance traversed by an object traveling
at a constant velocity is linearly related to both the velocity and the time can be
formalized using the relation, d = v¢, where d is the distance vector, v is the velocity
vector, and ¢ is the time. The distance, velocity, and time are physical quantities that
can be measured or controlled. Physical quantities such as distance, velocity, and time
are represented mathematically as tensors. A scalar, for example, is a zeroth-order
tensor. Only a magnitude is required to specify the value of a zeroth-order tensor. In
our previous example, time is such a quantity. If you are told that the duration of an
event was 3 seconds, you need no other information to fully characterize this physical
quantity. Velocity, on the other hand, requires both a magnitude and a direction to
specify its meaning. The velocity would be represented using a first-order tensor, also
known as a vector. The internal stress in a material is a second-order tensor, which
requires a magnitude and two directions to specify its value. You may recognize
that the two required directions are the normal of the surface on which the stress
acts and the direction of the traction vector on this surface. Tensors of higher order
require additional information to specify their physical meaning. In this chapter,
we will review the basic tensor algebra and tensor calculus that will be used in the
formulation of continuum representations.

1.1 Vectors

A first-order tensor, also known as a vector, is used to represent a physical quantity
whose representation requires both direction and magnitude. However, additional
requirements must be satisfied. First, two vectors must add according to the paral-
lelogram rule. Second, if a vector is defined within a given reference frame, and a
second rotated reference frame is defined, it must be possible to express the compo-
nents of a vector in one reference frame in terms of the components within another
reference frame.

Whereas the physical meaning of a vector, such as the velocity of a car, is inde-
pendent of coordinate system, the components of a vector are not. If we define a
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set of orthonormal basis vectors, {e|,e>,e3}, we can express a vector as a linear
combination of the basis vectors such that

a=aie| +ae; +ases,

where a1, az, a3 are scalars representing the components of the vector in the ey, e,
and e3 directions respectively. The magnitude of a vector, |a|, is a measure of the
length of a vector and is defined as

la| =/ (a:1Z +a% +a§).

It is often necessary to compare the relative size of two physical quantities whether
they be scalars, vectors, or a general nth-order tensor. In each case, we may compare
the norm of the two tensors. The norm of a scalar is equal to the absolute value of
the scalar, whereas the norm of a vector, denoted as ||a|, is equal to its magnitude.
Both the magnitude and the norm of a vector are zero if and only if each of the
components of the vector is zero.

Whereas magnitude specifies the size of the vector, the direction of the vector
may be represented by a unit vector,a, parallel to the original vector, a, such that

. a
a=—.
|a|

This unit vector captures the directional information contained within the vector but
discards the magnitude. The magnitude of any unit vector is equal to one. If two
vectors, @ and b, are parallel, one vector can be written as a scalar, «, times the other
vector,

a=uab.

Vector and tensor equations can become quite complicated. It is often possible
to use index notation to simplify and manipulate the representation of vector or
tensor equations. Let us begin with the assumption that we are modeling physical
quantities in a three-dimensional space that is spanned by the orthonormal basis
vectors, {e1,e2,e3}. In order to write a vector equation in index notation, we introduce
an index, i, which in this case is a variable that can assume the value of 1, 2, or 3. The
representation of a vector as a linear combination of the basis vectors can be written

in the compact form,
3

a=ae| +are;+azez = Zaie,u
i=1
The summation from 1 to 3 over a repeated index is quite common and may be
represented in a more compact form using the abbreviated summation convention
which is also termed Einstein notation as

a=ae;. (1-1)

The abbreviated summation convention is implied if and only if an index appears
exactly twice within the same term of an equation.
The sum of two vectors, b and c, is equal to a vector such that

a=b+c.



1.1 Vectors

The addition of two vectors is both communitive, b + ¢ = ¢ + b, and consistent with
the parallogram rule. The components of the vectors b and ¢ parallel to the same
basis vector can be added. Vector addition can be written in terms of components
such that

aje; +azer +azes = (b +cp)ey + (ba +c2)ex + (bs +c3)es.

This gives three separate equations for the components of the vector a,

ay=by+cy,
a) =by+ 3,
a3 = b3 +c3.

In index notation, this set of three equations is represented as
a;=b;+c,

where i can take on a value of 1, 2, or 3. The subscript i, termed a free index, appears
exactly once in each of the terms in the equation. In contrast, the subscript i, appears
twice in the right term in Equation (1.1). In that equation, the subscript is termed a
dummy index which signifies a summation from 1 to 3 over the repeated indices.

The scalar valued dot product, also known as a scalar product or inner product,
of two vectors is defined as

a-b=|a||b|cosbyp, = ai1by +axby + azbz = a;b;,

where 6, is the angle between the two vectors. There are no free indices in this
equation, but there is a single dummy index, i. When written in index notation, a
scalar-valued function will have no free indices, and a vector valued function will
have asingle free index. In the general case, an nth-order tensor-valued function will
have n free indices. From the definition of the dot product, we can see that the dot
product of two perpendicular vectors (6,5 = 90°) is equal to zero. In addition, the dot
product of a vector with itself gives the magnitude of the vector squared, |a|> = a-a.
The dot product of a unit vector with itself will then be equal to one, e; - e; = 1. An
orthonormal basis set has the property that each basis vector is perpendicular to the
others. Therefore, the dot product of each basis vector with all other basis vectors is
zero and the dot product of each basis vector with itself is equal to one giving

ei-ej=Jjj,
where we have introduced the Kronecker delta, §;;, which has the property

0 if i+#j
8ij = ST, (1.2)
1 if i=j
The components of a vector, a, along the direction of a unit vector ey, is given by
a-ey=|a|lcosbue, =ai,

where 6, is the angle between vector a and the basis vector e.
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Figure 1.1. Illustration of a parallelogram bounded by vectors a and b.

The result of the vector product or cross product, ¢, of two vectors, a and b, is
a vector that is perpendicular to each of the original vectors. The cross product is
written as

c=ax b= (ayb3z —azby)e| + (a3by —aib3) ez + (a1br — azby) es.
The magnitude of the cross product is equal to
e[ = |al|b|sin6ap,

where 6, is the angle between the two vectors.

The magnitude of the cross product is a measure of the area within a parallelo-
gram defined by the two vectors @ and b, Figure 1.1. The unit normal perpendicular
to the parallelogram is defined by the direction of the cross product, n = :ig . Two
parallel vectors will have a cross product equal to zero.

In this textbook, we will always employ a right-handed orthonormal basis set,
which has the properties that each basis vector is perpendicular to the other two,
the magnitude of each basis vector is equal to one, and the basis vectors are related
according to e; x e; = e3. If these conditions are satisfied, the cross product between
any two unit vectors can be written as

€ X e = s,-jkek,

where ég;jx is the Levi-Civita symbol, also known as the permutation symbol or the
alternating symbol. The Levi-Civita symbol has the values
1 if ik =123,231,0r 312
gijk =1—1 if ijk=132,213, 0r 321
0 forrepeated indices

A commonly used identity relating the permutation symbol and the Kronecker
delta is

Eijk€ipg = OjpOkq — ‘qu‘skp- (1.3)

EXAMPLE 1.1. Determine whether each term in the following equation is a scalar,
vector, or tensor and identify the free and dummy indices.

Bij = amamlij+ BCij.



1.1 Vectors

Solution:

The indices i and j both appear exactly once within each term of this equation.
They are each free indices. The index m appears exactly twice within the second
term. This is a dummy index and signifies a summation over the index m. The
summation may be expanded to obtain

Bjj = (a1a1 + a2az + azaz) I + BCjj.

The variable, a,,, has asingle index which signifies that a,, is the scalar component
of the vector a. The variable, B;;, has two indices, which means B;; is a scalar
component of the second-order tensor, B. The variable 8 has no index and is
therefore a scalar.

EXAMPLE 1.2. Find the value of §;;.

Solution:
Expanding this equation using the summation convention, we find that

3
Si=Y 8
i=1

=611 +622+ 833
=3.

EXAMPLE 1.3. Show that §;;a; = a;.

Solution:
In this equation, there is both a dummy index, i and a free index, j. Therefore,
this is a compact representation of the following three equations:

dinai =d11a1 +énaz2 + 83143
=1lxa1+0xa+0xa3
=ai,

dina; = d12a1 + 822az + 832a3
=0xa;+1xa+0xa3
=ay,

diza; = d13a1 + d23a2 + 83343
=0xa1+0xax+1xa3

= as.
This result can be compactly written as

dija; = a;.



