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I. Introduction and General Theory

1. TaE ENERGY BAND

A convenient assumption to make in beginning the discussion of the
behavior of electrons in crystals is that we may consider the motion of only
one particle in a periodic potential. This is an oversimplification, for one
really has a many-electron problem. Moreover, real crystals are not per-
fectly periodic but contain imperfections. Some of the complications
which arise because of the many-particle nature of the problem will be
discussed in subsequent sections; a general treatment of the problem of
imperfections is beyond the scope of this review. With this simplifying
assumption mentioned above, Bloch proved that solutions of Schréd-
inger’s equation have the form!

Vi = uxe’®r (1.1)

in which wu(r) is periodic in r with the periodicity of the potential. This
theorem is a general consequence of translational symmetry. The wave
functions are characterized by the wave number k which may be thought
of as equivalent to the crystal momentum. The energy of a state ¥ de-
pends in a reasonably continuous fashion on the wave number. The rela-
tion between energy and wave number characterizes an energy band.
The simplifying assumptions made above could lead to the false im-

1 F. Bloch, Z. Physik 62, 555 (1928).
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NS
ALk
reswn tI:at energy bands are found only in periodic structures. It is
u /;g tpik about energy bands in a disordered material provided
afe sufijﬁgently close that the atomic wave functions of atoms
on nelghbormg sites overlap. In such a case, one part of the material is,
on the average, just like any other part, so that wave functions and
energy values can still be characterized by a reasonably continuous
dependence of energy on momentum. We will not expect however, that
Eq. (1.1) will hold in such circumstances.

It should be apparent that the E(k) relation is one of the most impor-
tant properties of a material. It is involved in a basic way in any calcula-
tion of the electric, optical, or thermal characteristics of the substance.
The calculation of E(k) relations for actual materials is extremely compli-
cated. Many considerations of electrical properties, for example, are
based on extremely simplified models of the real band structure. Progress
has been made, however, in determining energy bands in a number of the
simpler. metals and semiconductors. We shall describe, first of all, some
of the general features of energy bands in periodic lattices, and will then
discuss both theoretical and experimental results in materials which have
been subject to detailed study. There will be no discussions of artificial
models, such as the Kronig-Penney model, or of methods of calculation.
For a survey of these topics, the reader is referred to the reviews by
Reitz and by Slater.?

2. THE MANY-ELECTRON PROBLEM

The enormous number of particles involved in a typical solid makes
direct solution of the Schrédinger equation completely impossible, and
leads naturally to the development of a one-electron approximation. It is
necessary, however, to relate the one-electron theory to the actual many-
electron situation, and to estimate the corrections to the results of the
one-body approximation. One might well wonder at first how a one-parti-
cle approximation can have any validity in the case of electrons which
interact with reasonably strong and very long-range forces. Experience
does convince us, however, that it is quite useful. We will examine the
reason for this.

Suppose we have a set of one-particle wave functions believed to be
appropriate to the problem. The best choice of these functions will be
discussed in the next section. An antisymmetric N-body wave function
can be found by taking N of the one-particle functions and forming a
Slater determinant in the standard manner. Such an approximate wave
function for the system will be called a model function in this article. If

*J. R. Reitz, Solid State Physics 1, 1 (1955); J. C. Slater in “Handbuch der Physik,”
Vol. 19, p. 1. Springer, Berlin, 1956.
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we construct all the possible N by N determinants out of the one-body
functions, the result is a complete set of antisymmetric V- -body functions
in terms of which the real wave function of the system can be expanded.

It usually is convenient to choose the model functions to be eigen-
functions of a partial Hamiltonian which either does not include the
interactions between particles at all, or includes only the average of these
interactions. The model functions can then be considered as approximate,
or unperturbed wave functions, for the system and the difference between
the actual and model Hamiltonians can be treated as a perturbation.
The actual machinery of this perturbation theory is quite complex and
will not be discussed in detail here for the reason that the Coulomb inter-
action in metals (as well as many of the interactions of interest in nuclear
physics) apparently leads to infinite results. Procedures have been
devised which circumvent this difficulty.3

The question of principal concern to us is the relation between stand-
ard energy band theory and the many-body problem. It appears that
much of the basic language of the theory is unchanged. W. Kohn has
shown that the behavior of an extra electron or hole in an insulator can be
described in some circumstances by an effective mass equation.’ A more
general approach would seem to be afforded by the work of Bethe, Gell-
Mann, and Brueckner, etc.®4 The one-particle functions which are com-
bined to form the model wave function of standard energy band theory
satisfy Bloch’s theorem and can be designated by the appropriate wave
vector and band index. A model wave function can be characterized by
specifying the one-particle states which are occupied. From a given model
state, a real state can be constructed. The actual energy of the system
can be associated with the model state from which the real state is de-
rived. It may not be possible, however, to obtain all the real states in this
way. In the model wave function of lowest actual energy FE,, the wave
vectors of the occupied one-electron states will lie within some surface in
k space. The excited states of interest to band theory are specified, in
relation to the ground-state model function, by listing the wave vectors
and spins of the previously occupied states which are now vacant (k) and
the previously empty states now filled (k/"). (Herez =1, . . . », where
v is the number of excited particles or holes.) Let the real energy of an

3 For a treatment of the general theory of the many-body problem see, for instance,
H. Bethe, Phys. Rev. 103, 1353 (1956), and the references contained therein.

4 The Coulomb interaction is treated by M. Gell-Mann and K. A. Brueckner, Phys.
Rev. 106, 364 (1957); M. Gell-Mann, Phys. Rev. 106, 369 (1957); K. Sawada, Phys.
Rev. 106, 372 (1957).

8 W. Kohn, Phys. Rev. 105, 509 (1957). For a general discussion of the many-body
problem in solids see H. Haken, Z. Naturforsch. 9a, 228 (1954).
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excited state be E. Then we write (following Gell-Mann?*):
E = Eo + Z{W(k!") — W(k/)] + O(»/N). (2.1)

The quantity W(k/’) is the difference in actual energy between the
ground state (Eo) and a state containing N + 1 particles, the additional
particle being (as far as the model wave function is concerned) in the
previously unoccupied state k/’. Here W(k/’) may be thought of as
representing the complete interaction energy of one particle in the state
k" with the rest of the system, but it differs quantitatively from a similar
quantity calculated in the Hartree-Fock approximation (see Section 3)
because of the more accurate inclusion of the correlation between particle
motions in this procedure. Similarly W(k/) is the difference in energy
between the ground state and a state with N-1 particles, one particle
being removed from the previously occupied state k. In addition to the
quantities W(k), the energy of the excited N-body state must include
terms containing the interaction between excited particles and between
excited particles and holes. This interaction is of the order »/N, and can
be neglected if v/N is small.

In more physical terms, the many-body system is capable of single-
particle excitations, and also of other excitations, such as collective
oscillations,® which are not described easily in a single-particle model and
in which the interaction between the excited particles is important. The
interesting single-particle excitations are those whose energy is low com-
pared to a collective oscillation.

An energy band is specified by the function W (k). A description of the
many-body system in terms of energy bands will be meaningful formally
when the excitation energy is not too large (less than is required to excite
a collective oscillation) and as long as we are not concerned with the
interactions between excited particles and between excited particles and
holes. The energy bands defined in this way are the same as those obtained
from the Hartree-Fock equations (3.1) when the more detailed treatment
of the particle interactions is neglected. In general, however, there are
quantitative differences arising from the more detailed treatment of particle
interactions in W (k).

Experimental results seem to indicate that the basic ideas of the one-
particle approximation actually are applicable to metals.” A well-defined
Fermi surface (the surface enclosing the occupied region of k space for
the one-particle functions) exists in metals and its characteristics can be

¢ D. Pines, Solid State Physics 1, 367 (1955). In a recent paper Noziéres and Pines
discussed the nature of the elementary excitations in solids. P. Nozidres and D.
Pines, Phys. Rev. 109, 1062 (1958).

7 N. F. Mott, Nature 178, 1205 (1956).
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determined. It also appears that many excitations of low-energy can be
described conveniently in terms of a one-particle model. This is quite
consistent with the point of view expressed in the foregoing. It should be
possible, and it is a basic objective of band theory to determine the shape
of the Fermi surface and to account quantitatively for the one-particle
excitations by computing the function W (k).

Similar successes of the one-particle model are observed in semicon-
ductors. The reasons for success in this case are perhaps more obvious.
In the first place, the number of holes and electrons involved in transport
processes is usually very small, so that it is quite reasonable to neglect
terms of the order »/N. Second, because of the existence of a finite energy
gap between filled and vacant states in the one-particle model, ordinary
perturbation theory of the electron interaction is convergent.?

3. THE HArTREE-Fock EQuUaTIONS

Although a theory for finding the exact energy to be associated with a
model state exists, it has not yet been possible to make calculations for
real systems. All existing calculations of energy bands are based on the
use of one model function. The question then presents itself: what is the
best choice of a model function? This can be determined by use of the
variational principle. The best model function is that for which the expec-
tation value of the energy is a minimum, subject to the conditions that the
one-particle functions which compose it be orthonormal. We are lead in
this way to an equation for the one-particle functions,? namely, the
Hartree-Fock equations. Let such a one-particle function be w(z;). The
equation is:

d y] ui(X)

IXI

-2 (/ ui* (y)uiy) |x——|d y) %(x) = eui(x). (3.1)

In the second term on the left, i, is the distance between electron 7 and
the nucleus L (assumed fixed). The sum runs over all the nuclei of the
system. The third term expresses the average electrostatic potential of
all the electrons of the system and the fourth term is the exchange inter-
action. In the approximation of Koopmans’ theorem,® the energy parame-
ter ¢; measures, the energy required to remove an electron in state 7 from
the system. In other words it is the quantity W (k) for the Hartree-Fock

8 C. W. Ufford, Phys. Rev. 69, 598 (1941).
® T. Koopmans, Physica 1, 104 (1933).
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approximation. The interpretation of this equation is discussed in the
reviews by Reitz and Slater.?

The calculation of energy bands is based, in principle, on the Hartree-
Fock equations. These equations form a quite complicated nonlinear
integro-differential system. It is clear that numerical methods of solution
must be employed. The usual procedure is the method of self-consistent
fields. At the outset, values for the functions u; are assumed. The integrals
appearing in the equations are calculated with the use of the starting
functions and the equations (which now have the standard Schrédinger
form for a single particle) are solved for the eigenvalues ¢; and the function
u;. If the solutions agree, within assigned limits, with the functions as-
sumed, the work is completed; if not, the process is repeated until such
time as the results of the nth and n + 1 stages agree. The procedure is
quite lengthy, and has been applied only to some of the simpler free
atoms.1®

In the case of a solid, there are two types of difficulties which stand in
the way of obtaining a self-consistent field calculation. Assume that a
choice of starting functions has been made, and the appropriate integrals
have been evaluated. Then Eq. (2.1) can be written effectively as

[— P oot v+ V.,(x)] w(x) = euslz) 3.2)

where V, and V.. are ordinary and exchange potentials respectively.
V.= may depend on the state ¢ under consideration. (See Section 4.)
It is then necessary to solve (3.1) for a sufficiently large number of states
that a reasonable idea of the band structure and wave functions can be
obtained. This problem is more difficult than for free atoms because cen-
tral symmetry does not prevail in solids. Thus the wave equation, in
general, cannot be separated. Certain methods have been devised which
will give good results, at least for some states. These methods are dis-
cussed in the review article of Reitz.2

Once the equations have been solved, the integrals must be re-evalu-
ated and the process repeated until self-consistency has been achieved.
This is quite difficult, in general, because it involves summing the charge
distribution over all occupied states. In fact, the problem is so difficult
that self-consistent calculations have not been completed for solids except
possibly in the case of the alkali metals.

For the results to be meaningful, it is necessary that the potentials
employed in (3.1) be reasonably close to those which would result from a
self-consistent calculation. Physical arguments must be used.

10 D. R. Hartree, “The Calculation of Atomic Structures.” Wiley, New York, 1957.
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It is apparent that the principal physical problem in a calculation band
structure is the choice of an appropriate crystal potential. Some of the
common approximations will be discussed in the next section. It is obvious
immediately that those results which depend critically on the details of
the potential used in a particular calculation must be viewed with some
caution. Moreover it is important to determine the features of a calcula-
tion which are likely to be sensitive to the potential.

4. THE CRYSTAL POTENTIAL

Since the construction of a crystal potential is of crucial importance
in a band calculation, it is desirable to discuss the various approximations
in more detail. In Eq. (3.2) the crystal potential was separated into two
parts; namely, an ordinary potential which is the sum of the nuclear
attractions and the averaged electronic repulsions, and an exchange
potential. The symmetry of the crystal permits us to calculate the poten-
tial within a single atomic cell. Consider first the ordinary potential. It is
convenient to separate this into two parts; namely, the potential arising
from the charge distribution in the particular cell, and that arising from
all the other cells. Since the computation of these requires a knowledge
of the charge distribution in the crystal, and hence the self-consistent
solution of the problem, certain approximations are made.

Consider first the case of a monatomic crystal. Each cell is electrically
neutral, so that we need to consider only one atom. In the solid state
problem we usually are concerned only with the valence electrons. The
core electron distributions on different atoms overlap very little, so that
bands of negligible width are formed. Thus it is legitimate to regard the
core electron distribution as the same in the solid and in the free atom.
For this reason any information we may have about the distribution of
the core electrons in the free atom is also relevant to the solid. Consider as
examples the alkali metals, in which there is one electron outside a core
of compact closed shells. Information regarding the core electron distribu-
tion may be obtained either from a self-consistent field calculation for the
free ion, or from the spectroscopic data for the free atom. In the latter
case, either an empirical potential can be constructed (see Section 12) or
spectroscopic information can be used almos* directly and explicit con-
struction of a potential function can be avoided. For substances more
complicated than the alkali metals, one generally must rely on self-con-
sistent field calculations for the free atom in determining the core electron
distribution. It is very unfortunate that self-consistent fields are available
for less than half the atoms in the periodic table and that only a small
number of the calculations that have been made include exchange.!!

As a result of the assumptions which must be made concerning the
11 Existing SCF calculations are listed by R. S. Knox, Solid State Phys. 4, 413 (1957).
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valence electron distribution, the construction of the crystal potential is
uncertain. In the alkali metals, the Wigner-Seitz approximation (Section
10) allows us to avoid this difficulty by using the ionic potential. For
more complicated materials, some assumption must be made explicitly.
It is probably adequate in many metals to assume that the external elec-
trons are uniformly distributed. This is not allowable for d electrons in the
transition elements. In ionic crystals, one may assume free ions, and use
the charge distribution appropriate to them. There is no clearly satisfac-
tory procedure in valence semiconductors.

If the crystal being considered is not monatomic, there is the possi-
bility of ionic character, for each atomic cell need not be electrically neu-
tral. The potential within a particular cell will not be determined by the
charge within the particular cell alone under these conditions. The rest
of the lattice must be taken into account. This contribution can be esti-
mated if the charges of the ions are known. The constant term in this
potential can be determined easily from the lattice parameter, effective
charge, and the Madelung constant. This ‘“Madelung” potential is not
actually constant in the unit cell; however, it has the symmetry of the
lattice, so that it is reasonable to neglect all but the constant part for
cubic crystals.

The determination of the exchange potential is still more uncertain.
Fortunately, this potential usually is reasonably small compared with the
ordinary potential and need not be determined with extreme accuracy.
Actually, an exchange potential is defined only in reference to a particular
state, and varies from state to state. For the function u; we define:

Vo = [us(x)]? E,- ( f w*(y)ui(y) ,x—?_—;l day) w(x).  (4.1)

I

The sum runs only over states having the same spin as ;. It usually is
not practical to obtain different exchange potentials for all the electronic
states of interest in a band calculation. Slater has proposed certain simpli-
fying approximations which can be used to obtain an average exchange
potential for all states.!? A comparison of approximate exchange potentials
has been given by Herman, Callaway, and Acton.'® The most celebrated
of these approximations replaces (4.1) by the exchange potential which
would exist in a free electron gas having the same density, namely:

Ve = —3e (i ,,)*- (4.2)
47 :

12 J, C. Slater, Phys. Rev. 81, 385 (1951).
13 F. Herman, J. Callaway, and F. S. Acton, Phys. Rev. 95, 371 (1954); see also V. W.
Maslen, Proc. Phys. Soc. (London) A69, 734 (1956), for further discussion.
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Here p is the density of electrons having the same spin as the state con-
sidered and is a function of position. This expression seems to give a
reasonably faithful qualitative rendition of the results of (4.1) for many
states, but it is inaccurate quantitatively. [It may be noted here that we
must include j = ¢ in (4.1).] It seems to over-estimate the effect of ex-
change by as much as 20 to 309 in some cases.!* Slater’s more involved
average'? does not seem to be appreciably better.1s

A somewhat better approximation probably can be obtained by assum-
ing that the exchange potential is the same for all states having the same
angular momentum.!® States are not characterized by an angular momen-
tum quantum number in a solid; however, in discussing states at sym-
metry points of the Brillouin zone in simple metals, it will often be possi-
ble to characterize the states by the predominant angular momentum in
the expansion of the wave function in terms of spherical harmonics. It is
probably better not to average the exchange potential over all the states
of the free atom having the angular momentum considered, as proposed
in ref. 12, since such states are likely to be more tightly bound than those
of interest in the solid. It is more reasonable to construct approximate
wave functions and determine an exchange potential from them. One
drawback in the procedure of introducing an exchange potential is that
Vex will have infinities if the function u; in (4.1) has nodes. These infinities
actually contribute nothing to the energy, but must be removed by some
smoothing or averaging process if an exchange potential is to be used like
an ordinary potential.

The reader should be aware of the very considerable uncertainty that
is involved in a crystal potential. It is likely that this difficulty will not be
resolved satisfactorily until such time as it is possible to calculate a self-
consistent field for a solid on the basis of Eq. (3.1).

Even in cases in which the questions of the ordinary and exchange
potentials within an individual cell are settled, there remains the question
of the interactions of the free electrons in different cells with each other.
This interaction depends on the wave vector k and consequently needs to
be included in an energy band calculation. There is, however, no quantita-
tive way of doing this at present.

5. SYMMETRY PROPERTIES

Because uncertainties exist in constructing a crystal potential, it is
desirable to employ symmetry considerations whenever possible to aid in
determining wave functions and energy levels. The classification of crystal
wave functions according to their symmetry properties is, of course, inde-
pendent of the detailed nature of the crystal potential. Such classification

14J. Callaway, Phys. Rev. 99, 500 (1955).
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will usually be found to be of considerable value in the calculational
process. Often symmetry considerations can be combined with experi-
mental data and simple theoretical inferences to derive quite reasonable
ideas of the bands in a particular crystal.

It is assumed that the reader is familiar with the basic ideas concerning
the symmetry properties of a crystal, in particular the Brillouin zone, as
discussed in standard texts.!s In this section the principles underlying the
symmetry classification of wave functions will be presented, based on
the work of Bouckaert, Smoluchowski, and Wigner.1¢ A detailed review of
these considerations has been given by Koster.!” In subsequent sections,
the behavior of an energy band near a degeneracy will be discussed (6),
the application of topological results to the determination of the density
of states will be considered (7), and finally a normal form will be pro-
posed for separate bands in simple lattices (8).

In the Hartree-Fock approximation, each one-electron wave function
must transform according to some representation of the space group of
the crystal. Consider first the invariant subgroup formed by the transla-
tions. Since all the translations commute with each other and with the
Hamiltonian, the energy eigenfunctions are also eigenfunctions of the
translation operators. This statement is equivalent to Bloch’s theorem
and implies that the functions are characterized by a wave vector k. In
addition to the translations, there are other operations which are rota-
tions and reflections in the simplest cases. If such an operation is applied
to a wave function for a particular k, the latter will be transformed into a
function having a different wave vector k’, which arises from k by the
operation considered. All the k’ formed from a general k, will be different;
however, the energy will be the same for each. For some values of k,
there will be symmetry operations which carry k into itself or into vector
k'’ = k 4+ K for which K is a reciprocal lattice vector. Such operations
form a group, which is called the group of the wave vector. The wave func-
tion for such a k will transform, under the group of k, as an irreducible
representation of this group, called a small representation.

The small representations and their connections have been worked out
for the simple cubic, body-centered cubic, and face-centered cubic lattices
in ref. 15. The notation of this paper will be used throughout. The
hexagonal lattice and the diamond lattice have been considered by
Herring.'® The zincblende structure has been studied by Parmenter!® and

18 F. Seitz, “The Modern Theory of Solids.”” McGraw-Hill, New York, 1940.

18 L. P. Bouckaert, R. Smoluchowski, and E. Wigner, Phys. Rev. 50, 58 (1936).

17 G. F. Koster, Solid State Phys. b, 173 (1957).

18 C. Herring, J. Franklin Inst. 283, 525 (1940); see also W. Doring and V. Zehler,
Ann. Phys. 18, 214 (1953).

19 R. H. Parmenter, Phys. Rev. 100, 573 (1955).
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Dresselhaus.?® Elliott?* has discussed the double group (spin included), as
have Parmenter and Dresselhaus. The reader is referred to these sources
for character tables. A general review of this material is given by Koster.!”

The utility of classifying the wave functions according to symmetry in
a band calculation is that the Hamiltonian has matrix elements only
between those functions which belong to the same row of the same irre-
ducible representation. Consequently, use of symmetrized functions is of
great value in diagonalizing the Hamiltonian. Modern methods of calcu-
lating energy bands employ expansions based on symmetrized functions.
The determination of the matrix elements of various operators is also
facilitated.

Symmetry considerations also furnish information concerning the
form and connections of the various bands in the Brillouin zone. Suppose
energy levels have been determined for a particular wave vector k, and
is desired to obtain the energies at a nearby wave vector ko + s. As is well
known, the energies of states at ko + s can be found from these at k, by
determining the effect of the perturbation 2is - vV (see Section 7). Sym-
metry considerations are not particularly helpful if k, is a general point in
the zone. If ko is a symmetry point, and (ko + s) is a general point, all the
degeneracy which may have been present at ko is removed. If the group
of (ko + s) is a subgroup of the group of ko, but contains more than the
identity, as occurs on going away from k = 0 along a symmetry axis, the
wave functions at (ko + s) transform according to the subgroup. If the
appropriate representation of the group of k, is reducible as a representa-
tion of the subgroup at (ko + s), the degeneracy at ko will be removed at
least in part. Of course, if the groups at k, and k, 4 s are the same, the
degeneracy will be the same. The compatibility relations summarize this
information and express the way in which levels at symmetry points may
connect with the bands along symmetry axes. These relations are obtained
from the representations as indicated above, and are given in the refer-
ences already listed.

A degeneracy, or sticking together of energy bands can be required by
symmetry only when the wave vector k, is invariant under some sym-
metry operations. The problem of accidental degeneracy of energy bands
(degeneracies not required by symmetry) has been examined by Herring.?
It is almost impossible for bands having the same symmetry to cross. For
example, at a general point, two wave functions having the same wave
vector never have the same energy, so that energy bands do not cross at
a general point. Similarly, on a symmetry axis, bands of the same sym-
20 G. Dresselhaus, Phys. Rev. 100, 580 (1955).

# R. J. Elliott, Phys. Rev. 96, 380 (1954).
22 C. Herring, Phys. Rev. 52, 365 (1937).



