COLIN RITCHIE

DATABASE PRINCIPLES AND DESIGN

THIRD EDITION

@ www.cengage.co.uk/ritchie

Database Principles and Design

Third Edition

Database Principles and Design 3rd Edition Colin Ritchie

Publishing Director: John Yates

Publisher: Gaynor Redvers-Mutton

Editorial Assistant: Matthew Lane

Content Project Editor: Alison Walters Leonora Dawson-Bowling

Production Controller: Maeve Healy

Manufacturing Manager: Helen Mason

Marketing Manager: Jason Bennett

Typesetter: Newgen, India

Cover design: Nick Welch

Text design: Design Deluxe, Bath, UK

© 2008, Cengage Learning EMEA

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, or applicable copyright law of another jurisdiction, without the prior written permission of the publisher.

While the publisher has taken all reasonable care in the preparation of this book, the publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions from the book or the consequences thereof.

For product information and technology assistance, contact emea.info@cengage.com

For permission to use material from this text or product, and for permission queries, email clsuk.permissions@cengage.com

Products and services that are referred to in this book may be either trademarks and/or registered trademarks of their respective owners. The publishers and author/s make no claim to these trademarks.

British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library

ISBN: 978-1-84480-540-2

Cengage Learning EMEA

High Holborn House, 50-51 Bedford Row London WC1R 4LR

Cengage Learning products are represented in Canada by Nelson Education Ltd.

For your lifelong learning solutions, visit www.cengage.co.uk
Purchase e-books or e-chapters at: http://estore.bized.co.uk

Preface

Overview

This text provides an introductory treatment of the principles and practice of relational databases, and is intended for students in HND and degree courses in computing or information technology in which the students are expected to develop competence in designing practical database systems.

No previous knowledge of databases is assumed but some knowledge of general principles of computers and a little programming experience would be helpful. The text is not a guide to any particular database system, although both Oracle, Microsoft Access and the (SQL) syntax of MySQL are used as exemplar systems.

Database design properly forms part of the broader process of systems analysis and design. However, data modelling and the consequent construction of a database are sufficiently distinct tasks to be worthy of treatment in a separate textbook. In addition to aspects of database design, this book also deals with other aspects of databases such as integrity and concurrency.

SQL is one of the most important elements of modern database technology. It is used very extensively by virtually all database systems and is a major vehicle in facilitating inter-database communication. Accordingly, it is important that students studying database principles obtain a good grounding in the language. To this end, this text contains a tutorial on Oracle SQL as well as guidance in using SQL in Access and MySQL. Other laboratory exercises on SQL are available from the text's support website www.cengage.co.uk/ritchie

Microsoft Access is used to demonstrate some of the aspects of database design. While Access is intended only for small scale database applications, it does provide a wide range of features such as forms and report generators that are found in larger systems and it is simple and very convenient to use – in short, it is ideal for student use.

Objectives

The objectives of the text are to provide the following:

- an introduction to the principles underlying relational databases
- instruction in the techniques used to design and develop practical database systems
- an introduction to some of the practical considerations with database systems, such security and integrity, distributed systems, etc.

- instruction in the use of SQL
- an introduction to other database technologies that are currently significant, such as object, object-relational and XML databases.

Summary of chapters

The text consists of thirteen chapters. The two Hands-On sections are somewhat distinct from the others: one is a tutorial on SQL, while the other is a simple introduction to Microsoft Access. The contents of the chapters are indicated below:

1 Introduction and background

This chapter provides a non-technical intuitive introduction to the subject.

2 The relational data model

The underlying principles of relational databases are introduced.

3 Conceptual database design

This chapter describes the process of developing a conceptual design for a proposed database application. Because of the size of this topic, the chapter has been divided into three sections, as follows:

- Part 1: Entity-Relationship (ER) model
- Part 2: Converting an ER model into a relational database model
- Part 3: Normalisation of the relational model

4 Physical database design

Aspects of building a practical system based on the conceptual models discussed earlier.

Hands-On Section A: Learning SQL

A practical guide to learning SQL.

5 Interfacing with the database

How the database can be accessed using a range of programming tools.

6 Transactions

This chapter describes the basic concepts of the transaction mechanism which is fundamental in maintaining system integrity.

7 Integrity and security

Considers techniques that are utilised in maintaining the integrity and security of database systems.

8 Network and distributed systems

Many if not most database systems now operate in a networked environment. We explore the implications of this for database systems.

Hands-On Section B: Microsoft Access

A practical guide to learning Access.

9 Post relational databases

This chapter describes database variants, object and object-relational systems, that provide object-oriented features.

10 Web databases

This chapter examines techniques used to provide database facilities within the context of a website.

11 XML and databases

XML is an increasingly significant factor in modern computing and this chapter indicates current developments regarding the storage of XML documents in conventional and purpose-built databases.

Appendix Answers to review questions.

Treatment

In order to make the text as readable as possible, each chapter, with the exception of the two Hands-On chapters, has the following structure:

- The chapter starts with a set of learning objectives that indicate what the student should learn from the chapter.
- After the main body of the chapter, a summary section recaps on the most significant points covered in that chapter.
- The summary is followed by a set of review questions. These are questions requiring a short answer and are intended simply to test the student's recall of the material covered. The review questions are answered in the appendix at the end of the book.
- A set of exercises is also provided. These are either appropriate practical exercises, and/or questions that might appear in an examination paper. Answers to exercises are provided on the text's support website.

The Hands-On chapters are intended to support the students' laboratory work:

1 Hands-On Section A: Learning SQL is a fairly extensive tutorial on SQL intended to be used in the laboratory to instruct the student in SQL. A set of exercises

xx Preface

- based on the same database is available from the text's support website. These exercises can be attempted by the student after working through the corresponding part of the tutorial.
- 2 Hands-On Section B: Microsoft Access is a simple introduction to using Microsoft Access to create tables, queries, forms and reports. This might form the basis for project work in Access, in which a full application is generated consisting of tables, transaction forms and business reports.

Supporting material

Additional resources are available on the website, www.cengage.co.uk/ritchie. These include:

- Answers to the chapter exercises.
- Sets of presentation slides for lecture use.
- Sample databases corresponding to the case studies introduced in Chapter 1, implemented in Microsoft Access. SQL scripts are also provided to enable the tables for these databases to be constructed in Oracle and MySQL.
- Sample examination-type questions for some topics.
- Sample specifications for project assignments.

Brief contents

- 1 Introduction and background 1
- 2 The relational data model 35
- 3 Conceptual database design 61
- 4 Physical database design 133

Hands-On Section A: Learning SQL A1-A75

- 5 Interfacing with the database 157
- 6 Transactions 179
- 7 Integrity and security 197
- 8 Network and distributed systems 215

Hands-On Section B: Microsoft Access B1-B56

- 9 Post relational databases 231
- **10** Web databases 273
- 11 XML and databases 335

Appendix 363

Index 383

Contents

Preface xvii

1 Introduction and background 1

Learning objectives 1

Introduction 2

Information systems analysis and design 2

Current methodologies 3

Alternative life-cycle techniques 5

Data storage in computers 6

The database concept 8

Definition of 'database' 10

Data modelling 12

General properties of data models 13

Modelling concepts 14

Earlier forms of database 15

Hierarchical model database 15

Network model database 17

The relational database 18

Case studies 19

Case study 1 - Employees 20

Case study 2 - DVD hire shop 20

Case study 3 - Training courses company 21

Case study 4 - Job agency 21

Case study 5 - Correspondence college 21

Tables in practice 22

A further example 26

Elements of a practical database system 30

The current database software market 30

Summary 31

Review questions 32

References 33

Textbooks 33

2 The relational data model 35

Learning objectives 35

The relational model 36

Sets and relations 36

Other relational concepts and terminology 39

Relational algebra 47

Relational views 55

Summary 56

Review questions 57 Exercises 57 References 59 Textbooks 59 Website 59

3 Conceptual database design 61

Learning objectives 61

Introduction 62

Part 1: Entity-Relationship (ER) model 62

Introduction 62

Entities and relationships 63

Optionality and participation 65

Visualisation of relationships 67

Attributes 68

Many-to-many relationships 71

Weak entities 72

More unusual relationships 73

Case studies 75

Case study 2 - DVD hire shop 76

Case study 4 - Job agency 80

UML system for ER modelling 83

Summary 85

Review questions 85

Exercises 86

Part 2: Converting an ER model into a relational database model 88

Part 2 Overview 88

Deriving a table design from an ER diagram 88

Summary of design process 88

Detailed process 88

Additional techniques 99

Case studies 106

Case study 2 - DVD rental 106

Case study 3 – Job agency 108

Summary 109

Review questions 109

Exercises 110

Part 3: Normalisation 111

Part 3 Overview 111

Overview of normalisation process 111

Normal forms 1NF, 2NF and 3NF 112

Boyce-Codd normal form 121

Fourth normal form (4NF) 123

Higher Forms: Fifth normal form (5NF) and DK/NF 125

Summary of normalisation 125

Case study 126

Summary 128 Review questions 128 Exercises 129 References 132

4 Physical database design 133

Learning objectives 133 Introduction 134 Database management systems 134 Features of a DBMS 134 Choice of database 137 Sample DBMS systems 138 Design of tables 140 Attribute design 140 Data redundancy 143 Indexing 146 Summary 152 Review questions 153 Exercises 153 References 154 Textbooks 154 Websites 155

Hands-On Section A: Learning SQL A1-A75

Introduction A2 Scenario A3 Implementations A5 SQL implementation differences A7 Main differences in MySQL A7 Main differences in Access A10 Session 1 - Simple queries A12 Introduction A12 Conditions A13 Other forms of condition A15 Logical operators A16 Multiple logical operators A18 ORDER BY clause A20 Set operations A22 Session 2 - Calculations and functions A24 Calculations A24 Functions A26 Session 3 – Groups and group functions A33 Introduction 33 Group functions A34 GROUP BY clause A36

HAVING clause A38

Session 4 - Joining tables A39

Introduction A39

Join definition A39

Inner and outer joins A44

SQL92 join formats A46

Session 5 - Subqueries A49

How SQL interprets a subquery A51

Subqueries yielding multiple rows A53

Subqueries producing multiple columns A55

More complex subquery constructions A56

Logical connectives A57

Session 6 – Data Definition Language (DDL) A58

Introduction A58

Creating tables A59

Creating a table from an existing table A60

Changing the structure of a table A61

Deleting a whole table A62

Adding rows to a table A62

Updating data in tables A64

Deleting rows from a table A65

Indexes A65

Constraints A66

Session 7 - Additional SQL features A68

Introduction A68

Views A68

DCL commands A71

Transactions A73

Constraints A74

References A74

Textbooks A74

Websites A74

5 Interfacing with the database 157

Learning objectives 157

Introduction 158

Programming the database 158

Applications of SQL 158

Standard database access interfaces 160

Fourth generation systems 167

User interfaces 171

Forms and report design - overview 171

Elements of forms 172

Report design 175

Summary 177

Review questions 177

Exercises 177 References 178 Textbooks 178 Websites 178

6 Transactions 179

Learning objectives 179 Introduction 180 Transactions 180 Concept and definition 180 ACID properties 181 Commit and rollback 182 Concurrent transactions 184 Problems of concurrency 184 Serialisation of transactions 187 Locking 188 Other locking variants 190 Deadlock 191 Introduction 191 Dealing with deadlocks 192 Summary 193 Review questions 193 Exercises 194 References 195 Websites 195

7 Integrity and security 197

Learning objectives 197 Introduction 198 Threats to the database 198 User erors 198 Software errors 198 Hardware failure 199 Malicious damage 199 Breach of confidentiality 199 Concurrency errors 199 Database integrity 200 Data validation 200 Type checking 201 Validation techniques 202 Assertions and triggers 206 Backup and recovery 208 Backup 208 Transaction logs 209 Checkpoints 209

Database privileges or permissions 210
Facilities in MS Access 210
Facilities in SQL 211
Summary 211
Review questions 212
Exercises 212
Reference 213

8 Network and distributed systems 215

Learning objectives 215
Introduction 216
Client-server systems 216
Concept 216
Three-tier architecture 217
Advantages of client-server approach 218
Peer-to-peer systems 219
Distributed databases 219
Overview 219
Homogeneous and heterogeneous 220

Partitioned, horizontal and vertical 220 Replication 222

Transparency 223 Schema management 223 Query processing 224

Concurrency control 225
Date's 12 objectives 225

Advantages and disadvantages of distributed databases 226

Summary 227
Review questions 228
Exercises 228
References 229
Textbooks 229

Website 229

Hands-On Section B: Microsoft Access B1-B56

Introduction B2
Getting started in Access B2
Creating a new database B3
Creating a table and entering data B4
Creating forms B9
Creating a report B15
Creating a query B18
Summary B20
Exercises B21

xiii

More about Access B21

More about tables B21

More about forms B24

Example B26

More about reports B38

Even more Access B43

Overview B43

Menus B44

Sub-forms B45

Query facilities B47

Object references and events B52

References B56

9 Post relational databases 231

Learning objectives 231

Introduction 232

Advantages and limitations of relational databases 233

Advantages 233

Limitations of the relational database 234

The object data model 237

Basic principles 237

Object examples 239

Messages 240

Classes 240

Collections 241

Object identity 241

Inheritance 241

Polymorphism 243

Post-relational systems 244

Object-relational databases 244

SQL:1999 standard 245

Oracle's SQL:1999 245

Intersystem's Caché object-relational database 254

Object-oriented databases 258

Persistence for objects 258

Object identity and references 260

OODBMS standardisation 260

Comparison with RDBMS 261

Current practical systems 262

Object-relational mapping 265

Current significant products 265

Summary 267

Review questions 267

Exercises 268

References 269 Textbooks 269 Websites 270

10 Web databases 273

Learning objectives 273

Introduction 274

Historical background 274

Client-server architecture 275

HTML 276

Common HTML tags 278

Overview of interactive web technologies 281

CGI 282

ASP and ASP.NET 283

Sample ASP scripts 284

Overview of ASP objects 287

ADO - ActiveX Data Objects 294

The development of ASP.Net 303

Background 303

Main features in page design 304

Database access in ASP.Net 308

Maintaining state in web applications 311

Introduction 311

ASP sessions 311

Cookies 311

URL-encoded variables 312

Hidden form variables 312

Database storage 313

Using cookies 313

PHP 314

Introduction 314

Availability 314

General principles 314

PHP coding 315

PHP language 316

Java servlets and JSP 323

Java servlets 323

Java server pages 325

Summary 329

Review questions 330

Client-server architecture 330

HTML forms 330

CGI 330

ASP, ADO 330

ASP.NET 330

Cookies 331
State maintenance 331
PHP 331
JSP/Servelets 331
Exercises 331
General ASP 332
Database 332
Cookies 332
References 333
Textbooks 333

11 XML and databases 335

Learning objectives 335 Introduction 336 XML overview 336 Attributes 338 Associated XML technologies 339 **DTD 339** XML Schema 340 XSL 341 XPath 343 XQuery 345 XPointer and Xlink 346 XML databases 347 Introduction 347 XML-enabled databases 348 SQL/XML functions - examples 351 Microsoft Access XML features 353 MySQL XML features 354 Native XML databases (NXD) 355 Overview 355 Advantages and disadvantages of NXD 356 Current XML software implementations 356 XML tools 357 Native XML databases 357 Summary 357 Review questions 358 Exercises 358 References 359 Textbooks 359 Websites 359

Appendix 363

Index 383