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0. Two Starting Examples

The core of our work is the study of Zero-One Laws for sparse random graphs.
We may think of this study as having two sources. The first is the Zero-One
Law for random graphs with constant probability, as given in Section 0.1.
The second is the notion of evolution of random graph as discussed in Section
1.1.1. In that evolution it is central that the edge probability p be taken not
just as a constant but as a function p = p(n) of the total number of vertices.
In Section 0.2 we examine such an evolution in the much easier case of a
random unary predicate. To allow an easy introduction we avoid a plethora
of notation in this chapter, the technical preliminaries — including many key
definitions — are left for Chapter 1 and beyond.

0.1 A Blend of Probability, Logic and Combinatorics

We will be looking at labelled graphs G on n vertices. For convenience we'll
call the vertices {1,...,n}. The number of such graphs is precisely 2(2) as
cach of the ('2') pairs ¢, j can be either adjacent or not adjacent. Consider
a graph property — for example, the property of containing a triangle. Call
the property A. We set u,,(A) equal the proportion of labelled graphs on n
vertices that have the property A. A precise evaluation of ju,(A) might be
very difficult. We start slowly.

Claim 0.1.1 lim,, . p,(A) =1

Rather than proportion, it will be easier to work [throughout this book]
with probabilities. Imagine that every pair . j of vertices flips a fair coin to
decide whether or not to be adjacent. We call the outcome the random graph
G (n, %) which is defined in Section 1.1. We can and shall interpret j,,(A) as
the probability that this random graph has property A.

With this interpretation we give a simple argument (one of many) for
Claim 0.1.1. Split the vertices into s = |[n/3] disjoint triples. A triple i, j, k
forms a triangle with probability precisely ?14 These are independent events
as they involve distinet coin flips. Thus the probability that none of the s
triples form a triangle is (7/8)%. This goes to zero as n. and therefore s, goes
to infinity. But this is an upper estimate (in some sense a very poor one but
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it suffices for our purposes) of the probability that there is no triangle what-
soever. When a nonnegative sequence is bounded from above by a sequence
going to zero it must itself go to zero. So the probability that there is no
triangle goes to zero.

Definition 0.1 When lim,, . jt,(A) = 1 holds we say that property A oc-
curs almost surely, or. equivalently, that almost all graphs have property A.
When lim,, . pt,,(A) = 0 we say that property A holds almost never, or.
equivalently, that almost no graphs have property A.

We note that this notation is not standard. A number of authors use the
term asymptotically almost surely for the above concept and reserve almost
surely for events that have probability one.

Let’s consider, without proofs. some other examples of properties A. Al-
most all graphs are connected. Almost no graphs are planar. Almost no graphs
have an isolated vertex. Almost all graphs have an induced pentagon. Is there
a strict dichotomy (what we’ll later call a Zero-One Law) between almost all
and almost no? Of course not. The average graph will have %(';) edges. Let
A be the event that the graph G has more than %('2’) edges. It is not diffi-
cult to show lim,, .o p,(A) = % that asymptotically half the graphs have
more than %('2‘) edges. Sometimes a “silly” example can be instructive. Let
A be the event that n itself is even. Then y,,(A) is one when n is even and
zero when n is odd, we aren’t even looking at the graph. Here pu,,(A) does
not approach a limit as n — oc! Still, these properties that avoid the strict
dichotomy are somewhat suspect, the earlier properties have much more of a
naturalness to them.

We would like to say that natural properties hold either almost surely
or almost never. But what properties shall we call natural? For most of this
book we shall deal with first order properties, as defined in Section 1.2. This
is a notion long studied by logicians. How well it captures “naturalness” is
discussed in Section 8.1.3 with some less than positive comments but our

reason for using it is quite pragmatic: we can prove something remarkable.
Theorem 0.1.2 (Fagin-GKLT). Let A be any first order property. Then

lim g, (A)= 0 orl

n—oo
That is, every first order sentence holds either almost surely or almost never.

GKLT refers to Glebskii, Kogan, Liagonkii and Talanov [8]. The proof of
this theorem we give here, basically from Fagin [7]. is a blend of combinatorics.
probability and logic. For every pair of nonnegative integers r. s we define a
particular property of special importance.

Definition 0.2 The r,s cxtension statement, denoted A, . is that for all
distinct vertices xy, ... .. v, and yi..... ys there exists a vertex z distinct from
them all which is adjacent to all of the ry. ... .. r,. and to none of the yy..... ys.
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We naturally include the cases r = 0 and s = 0 so that, for example, 4, g
is that every vertex has a neighbor. When z is adjacent to all the z’s and
none of the y’s we call z a witness, a term that will appear in later contexts
as well. The probability part of the proof consists of showing that

Claim 0.1.3 For all r,s > 0 the r,s extension statement A, s holds almost
surely.

For a given x1,...,x, and yq, ..., ys let NOz[xy, ..., ys] be the event that
there is no witness z. (The notation NOz is meant to suggest “no z.”)

Claim 0.1.4 Pr[Noz] = (1 —2 " )" "=,

—r—s

Proof: There are n —r — s potential witnesses z's. Each has probability 2
of being a witness, as r + s coin tosses must come up in a particular way. But
the events “z is not a witness” are mutually independent over the z's as they
involve disjoint sets of coin tosses. Thus the probability the no z is a witness
is (1 o 2—:'—3)n—1'—s'

While Pr[Noz] — 0 that by itself only shows that for a particular
X1y and y1, ...,y there is almost surely a witness z. The event A, ; is
logically equivalent to saying NoZ fails for all choices of x’s and y’s. Turning
things around, the event —A, ¢ is the disjunction of the events N0Oz over all
possible z;,..., 2z, and yi,.... ys. There are a total of ()(".") choices for
the x’s and y’s.

Now we need an absolutely elementary fact: The probability of the dis-
junction of events is at most the sum of the probabilities of the events. Equal-
ity occurs only when the events are disjoint. which will not be the case here.
The actual calculation of the probability of a disjunction can be quite compli-
cated (involving, e.g., the Inclusion-Exclusion laws) but it is surprising how
often the above fact will suffice for our purposes.

In applying our fact all the events have the same probability so the sum
is actually a product and

< (Yoo

Now, recalling r, s are fixed, we take the limit of the right hand side of 1 as
n — oo. The term (’,') (".") is a polynomial in n. The term (1 —27"7%)" "=
is an exponential in n, going to zero as 1 —27"7% < 1. Polynomial growth
times exponential decay goes to zero. We've bounded Pr[=A4, 4| from above
by a function going to zero and hence —A, ¢ holds almost never. But then
A, ¢ hold almost surely, giving Claim 0.1.3.

Now our argument makes a surprising turn into the infinite.

Definition 0.3 A graph G is said to have the Alice’s Restaurant property
if it satisfies the r,s extension statement A, s for all nonnegative integers
r,s. Bquivalently: if for all pairs of disjoint finite sets X,Y of vertices there
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erists z mot in their union which is adjacent to all ¥ € X and no y € Y.
Equivalently: given any finite set X of size, say, s there are witnesses = ¢ X
with all 2° possible adjacency patterns to X .

This colorful term was first used by Peter Winkler. Tt refers to a popular
song by Arlo Guthrie whose refrain - you can get anything you want at Alice’s
Restaurant — captures the spirit of the property. No finite graph G' can have
the Alice’s Restaurant property since one could take X to be the entire vertex
set and Y = () and then there would be no witness z. The surprise comes
when we look at countable graphs.

Theorem 0.1.5. There is a unique (up to isomorphism) countable graph G
satisfying the Alice’s Restaurant property.

Proof of Uniqueness: Let GG, G5 be countable graphs satisfying the Alice’s
Restaurant property, label their vertices ay,as. ... and by, b, ... respectively.
We will find a bijection ¢: GGy — G5 in an infinite number of stages, which
shall alternate between LeftStep and RightStep, beginning with a LeftStep.
At the beginning ¢ is nowhere defined. At each step we will define one more
value of ¢. (While the first (left) step can be considered part of the general
procedure below we note it always consists of setting ¢(a;) = b;.) Say that
after s steps we have defined ¢(x;) = y; for 1 < i < s. We shall require
inductively that ¢ is an isomorphism between its domain and range. i.e.. that
x;.xj are adjacent if and only if y,.y; are adjacent.

We define a RightStep. Let ys, 1 be the first vertex of G5 (by which we
mean that vertex with the smallest index when written b;) which is not
one of the yi,....ys. We define, and this is the critical point, x4, to be
the first vertex of G; which is not one of the xq....: rs and so that defining
O(rs41) = ys4+1 retains the inductive property i.e.. that ry is adjacent to
xr; (with 1 <47 < ) if and only if y.y is adjacent to y,. We are looking for an
Ty with a particular set of adjacencies to the xy.....: rs. The existence of
such an x4 follows from the Alice’s Restaurant property of the graph G.

A LeftStep is similar, taking ., to be the first vertex of G| which is
not one of the xy...... ry and then y..1 to be the first vertex of (G5 which is
not one of the yy,...,ys which is adjacent to y, (with 1 <7 < s) if and only
if 7,41 is adjacent to x;. The Alice’s Restaurant for the graph G guarantees
the existence of ysi1 and we set d(rei1) = Ysi1-

The final ¢ obtained by this procedure will be an isomorphism between
its domain and range. But any vertex in G| has some label. say a,. and so
will be in the domain after at most « LeftSteps, since at each LeftStep the
least vertex of GG not already taken is placed in the domain. Similarly, any
vertex in G has some label, say b,.. and so will be in the range after at most v
RightSteps, since at each RightStep the least vertex of Gy not already taken
is placed in the range. Thus ¢ is a bijection from (7 to G which preserves
adjacency and hence Gy, Gy are isomorphic.
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An Example: In the partial picture below we first set ¢(a;) = by. The next
step is a RightStep and b, is the first unused vertex of G5. It is adjacent to by.
The first unused vertex of G adjacent to ay is ayq so we set ¢(ay) = ba. The
next step is a LeftStep and as is the first unused vertex of G;. It is adjacent
to a; and not a4 so we seek an unused vertex of GGy adjacent to b; and not
ba, the first one is bg and we set ¢(as) = bg. The next step is a RightStep and
b3 is the first unused vertex of (5. It is adjacent to by and not to by nor bg
so we seek an unused vertex of 7 adjacent to ay and not to a; nor as. The
Alice’s Restaurant property of GG} assures us that such a vertex exists, if the
first one is a;7 we set ¢(aj7) = by and continue.

@iy A T o o e = b|
a; - b,
-
-
- by
N /
\ ’
\
a, \ // *
\
A
&
RN L4
/ \
/ N
/ N
/ bg
/
/
a7
Fig. 0.1.

Existence (Proof 1): Let the vertices be 0,1.2,.... For s > 1 let the 2°
vertices 2% < i < 25! have all possible adjacency patterns with 0. ... .. s — 1.
Explicitly, when 2% < i < 2571 write i = 2% + Z;;(l) €;2. For 0 < j < s have
i.j adjacent if and only if ¢; = 1. (Not all adjacencies have been specified by
this procedure, those that have not can be filled in arbitrarily.) Any finite set
X has a maximal value s and so there will be a witness i € [2°,2%"!) with
any desired adjacency pattern to X.

Existence (Proof 2): Start with a countable vertex set on which no adja-
cencies have been determined. Make a countable list (X, Y;) of pairs of dis-
joint finite sets from the vertex set. At step @ take a vertex z; not previously
used (not in Xy...... X:.Yi..... Y; nor z.....2z,—1) and make it adjacent to
all of X; and none of Y;. At the end of the countable procedure some pairs
have not had their adjacency determined, they can be set arbitrarily. But
any finite pair (X.Y) appeared in the conntable list as some position i and
so has its witness z = z;.

Existence (Proof 3): Since cach A, holds almost surely the theory T
generated by them is consistent and hence has a countable model, as discussed
more generally in Sections 1.5 and 1.6.
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The final portion of Theorem 0.1.2 uses Logic. Consider the theory T
of graphs with the sentences A, ;. (That is, add the A, ¢ as axioms.) This
theory has no finite models (that is, graphs satisfying the axioms) and has a
unique (up to isomorphism) countable model. From the Godel Completeness
Theorem, a basic but very deep result in logic. we deduce (as described in
more detail in Section 1.5) that the theory 7" is complete. This means that
for any sentence B either B or =B is deducible in the theory - provable from
the axioms A, ;.

Suppose B is provable in T'. Proof is finite and so there is a proof using
only finitely many of the axioms. call them A’ for 1 < i < u, each being of
the form A, . (This reduction to a finite number of axioms is critical and
sometimes referred to as the Compactness Principle.) Any G that satisfies
the conjunction A; A' must satisfy B. Complementing, any (' satisfying —B
must satisfy the disjunction V;,—A’. The probability of a disjunction is at
most the sum of the probabilities and so for any n

/ln(_‘B) = Z/’r:(_’Ai)

=1
The limit of a finite sum of sequences is the sum of their limits so

S

”12131L Z i ( Z ”lllll o (4 AY) Z 0=20

=1 =1 =1

Therefore =3 holds almost never. Therefore B holds alimost surely.

The only other case is when ﬁB is provable in T. The roles of B and B
are now reversed. We deduce B holds almost never. So either I3 holds almost
surely or almost never, completing the proof of Theorem 0.1.2.

The Fagin-GKLT Theorem 0.1.2 deals with asymptotics but speaks only
about finite graphs, infinite graphs never appear in the statement. Yet this
proof involves “going to the infinite and coming back™. It was that aspect
that first convinced this author (among many) of the beauties of the subject.
A rough analogy can be made to the use of the complex numbers to prove
statements about the reals. Mathematics works in strange ways. We shall
explore a number of techniques that lead to Zero-One Laws but the use of
infinite graphs shall remain a strong motif throughout this work.

0.2 A Random Unary Predicate

We turn now away from graphs to a rather casier random model which illus-
trates many of the concepts we shall deal with. We call it the simple unary
predicate with parameters n. p and denote it by SU(n. p). The model is over
a universe 2 of size n, a positive integer. We imagine each r € 2 flipping a
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coin to decide if U () holds, and the coin comes up heads with probability p.
Here we have p real, 0 < p < 1. Formally we have a probability space on the
possible U over (2 defined by the properties Pr[U(.r)] =p for all x € 2 and
the events U(x) being mutually independent. We consider sentences in the
first order language. In this language we have only equality (we shall always
assume we have equality) and the unary predicate U. The cognescenti should
note that 2 has no further structure and in particular is not considered an
ordered set as in Section 10.7.
This is a spartan language. One thing we can say is

YEs := 3, U(x),
that U holds for some @ € 2. Simple probability gives
Pr[SU(n.p) = YES] =1-—(1-p)"

As p moves from zero to one Pr[YES| moves monotonically from zero to one.
We are interested in the asymptotics as n — oc. At first blush this seems
trivial: for p = 0, SU(n, p) never models YES while for any constant p > 0,
lim PI'[SU(n,p) = YES] = lim1-(1-p)" =1
n—oo n—oo
In an asymptotic sense YES has already almost surely occurred by the time
p reaches any positive constant.

This leads us to a critical notion. We do not restrict ourselves to p constant
but rather consider p = p(n) as a function of n. What is the parametrization
p = p(n) that best enables us to see the transformation of Pr[SU(n.p(n)) =
YES] from zero to one. Some reflection leads to the parametrization p(n) =
¢/n. If ¢ is a positive constant then

n
lim PI‘[SU(H.[)(H)) = YES} = lim 1 - (1 - (—) =1—-c¢"
n—nono n—no0 1

(Technically, as p < 1 always, this parametrization is not allowable for n < ¢
but since our interest is only with limits as n — oo this will not concern

us.) If we think of ¢ going from zero to infinity then the limit probability is

going from zero to one. We shall not look at the actual limits here but only

in whether the limits are zero or one.

Repeating the notation of Section 0.1 we say that a property A holds
almost always if lim,, .~ Pr{SU(n.p(n)) = A] = 1. We say that A holds
almost never if the above limit is zero or. equivalently, if =A holds almost
surely. Note, however, that these notions depend on the particular function
p(n). This notion is extremely general. Whenever we have for all sufficiently
large positive integers n a probability space over models of size n then we
can speak of a property A holding almost surely or almost never. For the
particular property YES the exact results above have the following simple
consequences:



