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I dedicate this English edition to Richard S. Varga



1 Preface to the English edition

My main purpose in writing this textbook was to give, within reasonable
limits, a thorough description, and a rigorous mathematical analysis, of
some of the most commonly used methods in Numerical Linear Algebra
and Optimisation.

Its contents should illustrate not only the remarkable efficiency of these
methods, but also the interest per se of their mathematical analysis. If the
first aspect should especially appeal to the more practically oriented readers
and the second to the more mathematically oriented readers, it may be
also hoped that both kinds of readers could develop a common interest
in these two complementary aspects of Numerical Analysis.

This textbook should be of interest to advanced undergraduate and
beginning graduate students in Pure or Applied Mathematics, Mechanics,
and Engineering. It should also be useful to practising engineers, physicists,
biologists, economists, etc., wishing to acquire a basic knowledge of, or
to implement, the basic numerical methods that are constantly used today.

In all cases, it should prove easy for the instructor to adapt the contents
to his or her needs and to the level of the audience. For instance, a three
hours per week, one-semester, course can be based on Chapters 1 to 6, or
on Chapters 7 to 10, or on Chapters 4 to 8.

The mathematical prerequisites are relatively modest, especially in the
first part. More specifically, I assumed that the readers are already
reasonably familiar with the basic properties of matrices (including matrix
computations) and of finite-dimensional vector spaces (continuity and
differentiability of functions of several variables, compactness, linear map-
pings). In the second part, where various results are presented in the more
general settings of Banach or Hilbert spaces, and where differential calculus
in general normed vector spaces is often used, all relevant definitions and
results are precisely stated wherever they are needed. Besides, the text is
written in such a way that, in each case, the reader not familiar with
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these more abstract situations can, without any difficulty, ‘stay in
finite-dimensional spaces’ and thus ignore these generalisations (in this
spirit, weak convergence is used for proving only one ‘infinite-dimensional’
result, whose elementary ‘finite-dimensional’ proof is also given).

This textbook has some features which, in my opinion, are worth

mentioning.

The combination in a single volume of Numerical Linear Algebra and
Optimisation, with a progressive transition, and many cross-references,
between these two themes;

A mathematical level slowly increasing with the chapter number;

A considerable space devoted to reviews of pertinent background material,

A description of various practical problems, originating in Physics, Mech-
anics, or Economics, whose numerical solution requires methods from
Numerical Linear Algebra or Optimisation;

Complete proofs are given of each theorem;

Many exercises or problems conclude each section.

The first part (Chapters 1 to 6) is essentially devoted to Numerical Linear

Algebra. It contains:

A review of all those results about matrices and vector or matrix norms
that will be subsequently used (Chapter 1);

Basic notions about the conditioning of linear systems and eigenvalue
problems (Chapter 2);

A review of various approximate methods (finite-difference methods, finite
element methods, polynomial and spline interpolations, least square
approximations, approximation of ‘small’ vibrations) that eventually
lead to the solution of a linear system or of a matrix eigenvalue problem
(Chapter 3);

A description and a mathematical analysis of some of the fundamental
direct methods (Gauss, Cholesky, Householder; cf. Chapter 4) and
iterative methods (Jacobi, Gauss—Seidel, relaxation; cf. Chapter 5) for
solving linear systems;

A description and a mathematical analysis of some of the fundamental
methods (Jacobi, Givens—Householder, QR, inverse method) for com-
puting the eigenvalues and eigenvectors of matrices (Chapter 6).

The second part (Chapters 7 to 10) is essentially devoted to Optimisation.

It contains:

A thorough review of all relevant prerequisites about differential calculus in
normed vector spaces (Chapter 7) and about Hilbert spaces (Chapter 8);
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A progressive introduction to Optimisation, through analyses of Lagrange
multipliers, of extrema and convexity of real functions, and of Newton'’s
method (Chapter 7);

A description of various linear and nonlinear problems whose approximate
solution leads to minimisation problems in R", with or without constraints
(Chapters 8 and 10);

A description and mathematical analysis of some of the fundamental
algorithms of Optimisation theory — relaxation methods, gradient
methods (with optimal, fixed, or variable, parameter), conjugate gradient
methods, penalty methods (Chapter 8), Uzawa’s method (Chapter 9),
simplex method (Chapter 10);

An introduction to duality theory — Farkas lemma, Kuhn and Tucker
relations, Lagrangians and saddle-points, duality in linear programming
(Chapters 9 and 10).

More complete descriptions of the topics treated are found in the
introductions to each chapter.

Important results are stated as theorems, which thus constitute the core of
the text (there are no lemmas, propositions, or corollaries).

Although the many remarks may be in principle skipped during a first
reading, they should nevertheless prove to be helpful, by mentioning
various special cases of interest, possible generalisations, counter-
examples, etc.

The numerous exercises and problems that conclude each section provide
often important, and sometimes challenging to prove, additions to the

text.
In addition to ‘local’ references (about a specific result, a particular

extension, etc.) found at some places, references of a more general nature
are listed by subject and commented upon in a special section, titled
‘Bibliography and comments’, at the end of the book. The reader interested
by more in-depth treatments of the various topics considered here, or by
the practical implementation of the methods, should definitely refer to this
section.

While I wrote this text, many colleagues and students were kind enough
to make various comments, remarks, suggestions, etc., that substantially
contributed to its improvement. In this respect, particular thanks are
due to Alain Bamberger, Claude Basdevant, Michel Bernadou, Michel
Crouzeix, David Feingold, Srinivasan Kesavan, Colette Lebaud, Jean
Meinguet, Annie Raoult, Pierre-Arnaud Raviart, Frangois Robert, Ulrich
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Tulowitzki, Lars Wahlbin. Above all, my sincere thanks are due to
Bernadette Miara and Jean-Marie Thomas, who not only carefully read
the entire manuscript, but also significantly contributed to devising many
exercises and problems.

It is also my pleasure to thank David Tranah of Cambridge University
Press, and the translator, Alfred Buttigieg, S.J., whose friendly and efficient
co-operation made this edition possible.

In 1964, at Case Institute of Technology (now Case Western Reserve
University), I had the honour of having an outstanding teacher, who
communicated to me his enthusiasm for Numerical Analysis. It is indeed
a great privilege to dedicate this English edition to this teacher: Richard
S. Varga.

Philippe G. Ciarlet
July 1988
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A summary of results on matrices

Introduction

The purpose of this chapter is to recall, and to prove, a number of results
relating to matrices and finite-dimensional vector spaces, of which frequent
use will be made in the sequel.

It is assumed that the reader is familiar with the elementary properties of
finite-dimensional vector spaces (and, in particular, with the theory of
matrices). In section 1.1, we give the central definitions and notation
relevant to these properties, as also the notion of block partitioning of a
matrix, which is of outstanding importance in the area of the Numerical
Analysis of Matrices.

In order to make this volume as ‘self-contained’ as possible, all results
which are required subsequently are proved: in particular, the reduction of a
general matrix to triangular form, the diagonalisation of normal matrices
(Theorem 1.2-1), and the equivalence of a matrix to the diagonal matrix of its
singular values (Theorem 1.2-2). (In this respect, it is relevant to point out
that we will have no call to make use of Jordan’s theorem.) We then examine
(Theorem 1.3-1) the characterisations of the eigenvalues of symmetric or
Hermitian matrices through the use of Rayleigh’s quotient, and notably
the characterisations in terms of ‘min-max’ and ‘max-min’.

We next review the vector norms which are the most frequently
utilised in the Numerical Analysis of Matrices. These are particular cases of
the ‘l,-norms’ (Theorem 1.4-1). We then determine the corresponding
subordinate matrix norms (Theorem 1.4-2), an example of a matrix norm
which is not subordinate to a vector norm being given in Theorem 1.4-4. A
reminder is given in Theorem 1.4-5 of the conditions for the invertibility of
matrices of the form I + B, and it is shown (Theorem 1.4-3) that the spectral
radius of a matrix is the lower bound of the values of its norms. This last result
is in turn used to prove two results about the sequence of successive powers
of a matrix (Theorems 1.5-1 and 1.5-2). These play a fundamental role in
the study of iterative methods for the solution of linear systems, which
are studied in Chapter 5.



2 A summary of results on matrices

1.1 Key definitions and notation

Let V be a vector space of finite dimension n, over the field R of real
numbers, or the field C of complex numbers; if there is no need to
distinguish between the two, we will speak of the field K of scalars.

A basis of V is a set {e,, e,,...,e,} of nlinearly independent vectors of V,
denoted by (e;)-,, or quite simply by (e;) if there is no risk of confusion.
Every vector veV then has the unique representation

e

v= ) ve,

i=1

the scalars v;, which we will sometimes denote by (v);, being the components
of the vector v relative to the basis (e;). As long as a basis is fixed
unambiguously, it is thus always possible to identify V with K"; that is why it
will turn out to be just as likely for us to write v = (v,)!- ;, or simply (v;), for a
vector v whose components are v;.

In matrix notation, the vector v = > 7_, v;e; will always be represented by
the column vector

while vT and v* will denote the following row vectors:
ol = (vlvz...v")’ v* = (5152...5"),
where, in general, & is the complex conjugate of a. The row vector v" is the

transpose of the column vector v, and the row vector v* is the conjugate

transpose of the column vector v.
The function (-,"): ¥V x V- K defined by

wo)y=vu=uTv=> uy, if K=R,

i=1
wv)=vvu=u*v =Y up, if K=C,
i=1
will be called the Euclidean scalar product if K =R, the Hermitian scalar
product if K = C and the canonical scalar product if the underlying field is
left unspecified. When it is desired to keep in mind the dimension of the
vector space, we shall write
(u, v) = (u, V),
Let V be a vector space which is provided with a canonical scalar
product. Two vectors u and v of V are orthogonal if (u,v) = 0. By extension,
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the vector v is said to be orthogonal to the subset U of V (in symbols, v L U), if
the vector v is orthogonal to all the vectors in U. Lastly, a set {v,,...,v,} of
vectors belonging to the space V is said to be orthonormal if

(Ui’ vj) = 5ij’ 1 < l’] S k’
where 9;; is the Kronecker delta: 6;;=1ifi=j, 6;;=0if i #}.
Let ¥V and W be two vector spaces over the same field, equipped with
bases (e;)}-; and (f;)]~, respectively. Relative to these bases, a linear
transformation

A VoW
is represented by the matrix having m rows and n columns:
a1 Gy o Gy,
a a eoa
T ul,
Amy Qm2 **° Qmp

the elements a;; of the matrix A being defined uniquely by the relations

s

de;j= ) a,f, 1<j<n

i=1

Equivalently, the jth column vector
a;

as;j

Amj
of the matrix A represents the vector .&/¢; relative to the basis (f)/- . We call
(@i 053 ayy
the ith row vector of the matrix A.

A matrix with m rows and n columns is called a matrix of type (m,n), and
the vector space over the field K consisting of matrices of type (m, n) with
elements in K is denoted by &/, , (IK) or simply A - A column vector is
then a matrix of type (m, 1) and a row vector a matrix of type (1,n). A
matrix is called real or complex according as its elements are in the field
R or the field C.

A matrix A with elements g;; is written as

A= (aij),
the first index i always designating the row and the second, j, the column.
Given a matrix A, (A);; denotes the element in the ith row and jth column.
The null matrix and the null vector are represented by the same symbol 0.
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Given a matrix Ae«/,, ,(C), A*e.«, ,(C)denotes the adjoint of the matrix
A and is defined uniquely by the relations

(Au,v),, = (u, A*v), for every ueC", veC"™,

which imply that (A*);;=a;. In the same way, given a matrix A =
A o o(R),ATeo/, (R) denotes the transpose of the matrix A and is defined
uniquely by the relations

(Au,v),, = (u,ATv), for every ueR", veR™
which imply that (AT),; = a,

Remarks

(1) One could also define the transpose of a complex matrix. However,
that would provide a concept of limited interest, since the function
u,v—Y"_, uv; is not a scalar product in C".

(2) The notation AT has been given preference over the notation ‘A, this
latter being more suitably linked to the notion of a dual basis. The notation
AT keeps in mind the dependence of the notion of transpose upon a
particular scalar product, the canonical scalar product.

To the composition of linear transformations there corresponds the
multiplication of matrices. If A = (a,) is a matrix of type (m,[) and B = (b, )
of type (I, n), their product AB is the matrix of type (m, n) defined by

1
(AB); = kzl by j.

Recall that (AB)" = BTAT, (AB)* = B*A*.
Let A = (a;;) be a matrix of type (m, n). We shall use the term submatrix of
A for every matrix of the form

Qijy GQiyj, o Gy,
i2iy @iy, aiZiq
ipjy  Giyj i

provided the integers i, and j, satisfy
1<iy<iy<- <i,<m, 1<j,<j,<--<j,<n

Let A = (a;;) be the matrix representing a linear transformation from V
into W and let

V=V,eV,® - -®Vy, W=W oW, - -®Wy

be decompositions of the spaces V and W into the direct sum of subspaces
V, and W, of dimensions n; and m, respectively, each spanned by a set of
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basis vectors. With this decomposition of the spaces V and W is associated
the block decomposition of the matrix A:

Ay | Ay

Ap | Azl o oo |Aw

>
I

= (A

Aui [Amz| o o o |Aun

each submatrix A,,, of type (m,, n,), representing a linear transformation
from the space V; into the space W,. What is of interest in these block
decompositions is the fact that some of the operations defined on matrices
remain formally the same, ‘the coefficients a;; being replaced by the
submatrices A;;’. However, care is required over the order of the factors!

Thus, let A =(A,x) and B = (Bg,) be two matrices, of type (m, l) and (I, n)
respectively, decomposed into blocks, the decomposition corresponding to
the index K being the same for each matrix. The matrix AB then admits the
following block decomposition

AB=(C,), with Cj;= ; AxBky»

and in this way one is said to have carried out the block multiplication of the
two matrices.

In the same way, let v be a vector in the space V and let v=3%_,v,,
v,;€V,, be ‘he (unique) representation associated with the decomposition of
the space V into a direct sum. The vector Ave W then has the representation

M N
Av=3 w, with w,=Y A,
I1=1 J=1

as the unique representation associated with the decomposition of the space
W into a direct sum. This is equivalent to considering the vectors v and Av as
decomposed into blocks

N
v= ,  Av= . ow= Y Ay,

the last equation embodying the block multiplication of the matrix A by the
vector v.

A matrix of type (n,n) is said to be square, or a matrix of order n if it is
desired to make explicit the integer n; it is convenient to speak of a matrix as
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rectangular if it is not necessarily square. One denotes by
A, =d,, or o (K)=.¢,, (K)

the ring of square matrices of order n, with elements in the field K.

Unless anything is said to the contrary, the matrices to be considered up to
the end of this section will be square.

If A = (a,;) is a square matrix, the elements a;; are called diagonal elements,
and the elements a;;,i #j, are called off-diagonal elements. The identity
matrix is the matrix

[=(5;).

A matrix A is invertible if there exists a matrix (which is unique, if it does
exist), written as A~ ! and called the inverse of the matrix A, which satisfies
AA~!=A"!'A =1. Otherwise, the matrix is said to be singular. Recall that
if A and B are invertible matrices

(AB)_I :B—1A~l, (AT)fl =(A_1)T, (A*)_l =(A_1)*.
A matrix A is

symmetric if A is real and A = AT,
Hermitian if A = A¥*,
orthogonal if A is real and AAT=ATA =1,
unitary if AA* = A*A =1,
normal if AA* = A*A.
A matrix A = (a;)) is diagonal if a;;= 0 for i # j and is written as

A =diag(a;) =diag(a,,,a;,,- . ..d,,).

The trace of a matrix A =(a;;) is defined by

n
tr(A)= Y ay
i=1
Let S, be the group of permutations of the set {1,2,..., n}. To every
element ceS, there corresponds the permutation matrix
Prr = (6iﬂ(j])-

Observe that every permutation matrix is orthogonal.
The determinant of a matrix A is defined by

det(A) = Z Eal5(1)195(2)2 " Aa(nyns

aeB,
where ¢, = 1, resp. — 1, if the permutation o is even, resp. odd.
The eigenvalues A; = A(A), 1 <i<n, of a matrix A of order n are the n
roots, real or complex, simple or multiple, of the characteristic polynomial

pa:A€C - pa(A) =det (A — Al)



