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Foreword

This book provides a thorough introduction to optimal control theory for non-
linear systems. It is a sequel to Berkovitz’'s 1974 book entitled Optimal Con-
trol Theory. In optimal control theory, the Pontryagin principle, Bellman’s
dynamic programming method, and theorems about existence of optimal con-
trols are central topics. Each of these topics is treated carefully. The book
is enhanced by the inclusion of many examples, which are analyzed in de-
tail using Pontryagin’s principle. These examples are diverse. Some arise in
such applications as flight mechanics, and chemical and electrical engineer-
ing. Other examples come from production planning models and the classical
calculus of variations.

An important feature of the book is its systematic use of a relaxed control
formulation of optimal control problems. The concept of relaxed control is
an extension of L. C. Young’s notion of generalized curves, and the related
concept of Young measures. Young’s pioneering work in the 1930s provided a
kind of “generalized solution” to calculus of variations problems with noncon-
vex integrands. Such problems may have no solution among ordinary curves.
A relaxed control, as defined in Chapter 3, assigns at each time a probability
measure on the space of possible control actions. The approach to existence
theorems taken in Chapters 4 and 5 is to prove first that optimal relaxed
controls exist. Under certain Cesari-type convexity assumptions, optimal con-
trols in the ordinary sense are then shown to exist. The Pontryagin maximum
principle (Chapters 6 and 7) provides necessary conditions that a relaxed or
ordinary control must satisfy. In the relaxed formulation, it turns out to be
sufficient to consider discrete relaxed controls (see Section 6.3). This is a note-
worthy feature of the authors” approach.

In the control system models considered in Chapters 2 through 8, the
state evolves according to ordinary differential equations. These models ne-
glect possible time delays in state and control actions. Chapters 10, 11, and
12 consider models that allow time delays. For “hereditary systems” as de-
fined in Chapter 10, Pontryagin’s principle takes the form in Theorem 10.3.1.
Hereditary control problems are effectively infinite dimensional. As explained
in Section 10.6, the true state is a function on a time interval [—r, 0] where
r represents the maximum time delay in the control system. Chapter 11 con-
siders hereditary system models, with the additional feature that states are
constrained by given bounds. For readers interested only in control systems

ix
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without time delays, necessary conditions for optimality in bounded state
problems are described in Section 11.6.

The dynamic programming method leads to first order nonlinear partial
differential equations, which are called Hamilton-Jacobi-Bellman equations
(or sometimes Bellman equations). Typically, the value function of an optimal
control problem is not smooth. Hence, it satisfies the Hamilton-Jacobi-Bellman
equation only in a suitable “generalized sense.” The Crandall-Lions Theory
of viscosity solutions provides one such notion of generalized solutions for
Hamilton-Jacobi-Bellman equations. Work of A. I. Subbotin and co-authors
provides another interesting concept of generalized solutions. Chapter 12 pro-
vides an introduction to Hamilton-Jacobi Theory. The results described there
tie together in an elegant way the viscosity solution and Subbotin approaches.
A crucial part of the analysis involves a lower Dini derivate necessary condition
derived in Section 12.4.

The manuscript for this book was not quite in final form when Leonard
Berkovitz passed away unexpectedly. He is remembered for his many original
contributions to optimal control theory and differential games, as well as for
his dedicated service to the mathematics profession and to the control com-
munity in particular. During his long career at Purdue University, he was a
highly esteemed teacher and mentor for his PhD students. Colleagues warmly
remember his wisdom and good humor. During his six years as Purdue Math-
ematics Department head, he was resolute in advocating the department’s
interests. An obituary article about Len Berkovitz, written by W. J. Brown-
ing and myself, appeared in the January/February 2010 issue of SIAM News.

Wendell Fleming



Preface

This book is an introduction to the mathematical theory of optimal control
of processes governed by ordinary differential and certain types of differential
equations with memory and integral equations. The book is intended for stu-
dents, mathematicians, and those who apply the techniques of optimal control
in their research. Our intention is to give a broad, yet relatively deep, concise
and coherent introduction to the subject. We have dedicated an entire chapter
to examples. We have dealt with the examples pointing out the mathematical
issues that one needs to address.

The first six chapters can provide enough material for an introductory
course in optimal control theory governed by differential equations. Chap-
ters 3, 4, and 5 could be covered with more or less details in the mathematical
issues depending on the mathematical background of the students. For stu-
dents with background in functional analysis and measure theory, Chapter 7
can be added. Chapter 7 is a more mathematically rigorous version of the
material in Chapter 6.

We have included material dealing with problems governed by integrodif-
ferential and delay equations. We have given a unified treatment of bounded
state problems governed by ordinary, integrodifferential, and delay systems.
We have also added material dealing with the Hamilton-Jacobi Theory. This
material sheds light on the mathematical details that accompany the material
in Chapter 6.

The material in the text gives a sufficient and rigorous treatment of finite
dimensional control problems. The reader should be equipped to deal with
other types of control problems such as problems governed by stochastic dif-
ferential equations and partial differential equations, and differential games.

I am very grateful to Mrs. Betty Gick of Purdue University and Mrs. An-
nette Rohrs of Georgia Institute of Technology for typing the early and final
versions of the book. I am very grateful to Professor Wendell Fleming for
reading the manuscript and making valuable suggestions and additions that
improved and enhanced the quality of the book as well as avoided and re-
moved errors. I also wish to thank Professor Boris Mordukovich for reading
the manuscript and making valuable suggestions. All or parts of the mate-
rial up to the first seven chapters have been used for optimal control theory
courses in Purdue University and North Carolina State University.

This book is a sequel to the book Optimal Control Theory by Leonard

xi



xii Nonlinear Optimal Control Theory

D. Berkovitz. I learned control theory from this book taught by him. We de-
cided to write the current book in 1994 and we went through various versions.

L. D. Berkovitz was my teacher and a second father. He passed away on
October 13, 2009 unexpectedly. He was caring, humble, and loved mathemat-
ics. He is missed greatly by all who were fortunate enough to have known him.
This book was completed before his death.

Negash G. Medhin
North Carolina State University
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Chapter 1

Examples of Control Problems

1.1 Introduction

Control theory is a mathematical study of how to influence the behavior
of a dynamical system to achieve a desired goal. In optimal control, the goal
is to maximize or minimize the numerical value of a specified quantity that is
a function of the behavior of the system. Optimal control theory developed in
the latter half of the 20th century in response to diverse applied problems. In
this chapter we present examples of optimal control problems to illustrate the
diversity of applications, to raise some of the mathematical issues involved, and
to motivate the mathematical formulation in subsequent chapters. It should
not be construed that this set of examples is complete, or that we chose the
most significant problem in each area. Rather, we chose fairly simple problems
in an effort to illustrate without excessive complication.

Mathematically, optimal control problems are variants of problems in the
calculus of variations, which has a 300+ year history. Although optimal control
theory developed without explicit reference to the calculus of variations, each
impacted the other in various ways.

1.2 A Problem of Production Planning

The first problem, taken from economics, is a resource allocation problem;
the Ramsey model of economic growth. Let () denote the rate of production
of a commodity, say steel, at time t. Let I(¢) denote the rate of investment
of the commodity at time ¢ to produce capital; that is, productive capacity.
In the case of steel, investment can be thought of as using steel to build new
steel mills, transport equipment, infrastructure, etc. Let C(t) denote the rate
of consumption of the commodity at time ¢. In the case of steel, consumption
can be thought of as the production of consumer goods such as automobiles.
We assume that all of the commodity produced at time ¢t must be allocated
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to either investment or consumption. Then
Q) =1I(t)+C(t) I(t)>0 C(t)>0.

We assume that the rate of production is a known function F of the capital
at time t. Thus, if K(t) denotes the capital at time ¢, then

Q(t) = F(K(t)),

where F' is a given function. The rate of change of capital is given by the
capital accumulation equation

dK -
s al(t) —dK(t) K(0)= Ky, K(t)>0,

where the positive constant « is the growth rate of capital and the positive
constant d is the depreciation rate of capital. Let 0 < u(t) < 1 denote the
fraction of production allocated to investment at time t. The number u(t) is
called the savings rate at time t. We can therefore write

I(t) = u(t)Q(t) = u(t)F(K(t))
C(t) = (1 —u®)Q(t) = (1 —u(t)) F(K(t)),

and

dK
= = CuOF (K (1) — 6K (1) (1.2.1)
K(t) >0 K(0)= Ko.

Let T > 0 be given and let a “social utility function” U, which depends on
C, be given. At each time ¢, U(C(t)) is a measure of the satisfaction society
receives from consuming the given commodity. Let

T
J=/0 U(C(t))e " dt,

where ~ is a positive constant. Our objective is to maximize .J, which is a
measure of the total societal satisfaction over time. The discount factor e~ 7t
is a reflection of the phenomenon that the promise of future reward is usually
less satisfactory than current reward.

We may rewrite the last integral as

T
J :/0 U((1 —u(t))F(K(t))e dt. (1.2.2)

Note that by virtue of (1.2.1), the choice of a function u: [0, 7] — u(t), where
u is subject to the constraint 0 < u(t) < 1 determines the value of .J. We have
here an example of a functional; that is, an assignment of a real number to
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every function in a class of functions. If we relabel K as z, then the problem
of maximizing J can be stated as follows:

Choose a savings program u over the time period [0, 77, that is, a function
u defined on [0, 7], such that 0 < u(t) <1 and such that

T
J(u) = —/ U((1 —u(t)F(p(t))e dt (1.2.3)
0
is minimized, where ¢ is a solution of the differential equation
dz
5 = ut)F(z) — 0z ¢(0) = zo,
and ¢ satisfies p(t) > 0 for all ¢ in [0, 7]. The problem is sometimes stated as
Minimize: -
J(u) = —/ U((1 —u(t))F(x))e dt
0
Subject to:
dx
5= ou(t)F(z) —ox, z(0)=x9, x>0, 0<u(t)<l1

1.3 Chemical Engineering

Let z'(t),...,2™(t) denote the concentrations at time ¢ of n substances in
a reactor in which n simultaneous chemical reactions are taking place. Let the
rates of the reactions be governed by a system of differential equations

a =G (xl,...,x",ﬁ(t),p(t)) z'(0)=2z5 i=1,...,n. (1.3.1)
where 0(t) is the temperature in the reactor at time ¢t and p(t) is the pressure
in the reactor at time t. We control the temperature and pressure at each
instance of time, subject to the constraints

6y < 0(t) < 6a (1.3.2)
o < p(t) < pa

where 6,, 6, pa, and p, are constants. These represent the minimum and
maximum attainable temperature and pressure.

We let the reaction proceed for a predetermined time 7'. The concentra-
tions at this time are z*(7T'),...,2™(T). Associated with each product is an
economic value, or price ¢, i = 1,...,n. The price may be negative, as in the
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case of hazardous wastes that must be disposed of at some expense. The value
of the end product is

V(p,0) = zn: clz'(T). (1.3.3)

Given a set of initial concentrations xf), the value of the end product is com-
pletely determined by the choice of functions p and 6 if the functions G* have
certain nice properties. Hence the notation V'(p,#). This is another example
of a functional; in this case, we have an assignment of a real number to each
pair of functions in a certain collection.

The problem here is to choose piecewise continuous functions p and 6 on
the interval [0, T so that (1.3.2) is satisfied and so that V(p,#) is maximized.

A variant of the preceding problem is the following. Instead of allowing the
reaction to proceed for a fixed time 7', we stop the reaction when one of the
reactants, say o', reaches a preassigned concentration .. Now the final time
ts is not fixed beforehand, but is the smallest positive root of the equation
x'(t) = 2. The problem now is to maximize

V(p.0) = cai(ty) — k.
=2

The term k?t; represents the cost of running the reactor.
Still another variant of the problem is to stop the reaction when sev-
eral of the reactants reach preassigned concentrations, say z' = z}, 2 =

BFyses Jxl = :L'Z, The value of the end product is now

s
Z Cil'i(tf) — kztf.
i=j+1
We remark that in the last two variants of the problem there is another
question that must be considered before one takes up the problem of maxi-
mization. Namely, can one achieve the desired final concentrations using pres-
sure and temperature functions p and 6 in the class of functions permitted?

1.4 Flight Mechanics

In this problem a rocket is taken to be a point of variable mass whose
moments of inertia are neglected. The motion of the rocket is assumed to take
place in a plane relative to a fixed frame. Let y = (y',y?) denote the position
vector of the rocket and let v = (v',v?) denote the velocity vector of the
rocket. Then o

CZ =u  y0)=yi i=1,2, (1.4.1)




