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Foreword

Interest in complement developed at the end of the nineteenth century from
observations on cellular and humoral defense mechanisms against bacteria. It was
recognized at that time that there were factors in body fluids of animals and man
that were capable of killing and lysing bacteria in the absence of cellular factors.
Due to the efforts of two of the founders of immunology, Bordet and Ehrlich, and
their colleagues, by 1912 the multicomponent nature of complement action was well
recognized, the sequence of reaction of the components in the lysis of erythrocytes
was defined, complement fixation as a major tool for studying antibody-antigen
interaction was well established, and studies on the physicochemical properties of
the components had been started. Yet, with a few notable exceptions, research on
complement was largely abandoned by most ‘‘'mainstream’ immunologists for the
following two or three decades. When one looks at the contents of the present
volume, it is hard to imagine that as recently as 20 vears ago, there were probably
fewer than ten major laboratories where complement research was the primary
theme. The contents attest to the fact that there are today dozens of laboratories on
three continents where research on complement is pursued in depth.

It is not easy to point to all the advances that have occurred in complement
research during the past few years. The chapters in this book, however, offer a wide
selection from the vast subject of complement research representing some of these
advances. Our knowledge of complement action was put on a molecular basis by
the analysis of the steps leading from the interaction of sheep red cells with antibody
to the lysis of the cells due to complement action; from these studies we have
progressed so that presently hemolytic activity can be defined on a molecular basis,
activation and interaction are interpretable on a biochemical basis, and the physico-
chemical, biochemical, and biological consequences of these interactions have
become amenable to chemical analysis.

It is now understood that the classical complement cascade consists of nine
proteins, each existing in serum in a precursor form; the individual components are
either activable to a specific enzyme or become part of a multimolecular complex
with enzyme activity. The enzymes of the classical pathway are esterases and/or
proteases and under certain conditions some can be replaced by trypsin and other
common proteases. Thus the activation of a substrate component by the previously
activated component in the sequence is usually accompanied by splitting of the
substrate into two or more fragments. The various fragments have specific biologi-
cal properties and most of these properties are discussed in various chapters.
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Some of the biological functions link the cellular and humoral compartments of
the immune system. For example, a fragment of C5 serves as a positive chemotactic
agent for monocytes and granulocytes; monocytes and macrophages have surface
receptors for fragments of C3; and there is some evidence that a functional C system
in some instances is needed for induction of antibody production.

Ever since it was shown that complement causes injury to cells, investigators
have postulated that cells can resist the cytotoxic action of complement. Studies on
the cytotoxic effect of complement on nucleated cells now furnish evidence for an
active defense mechanism of cells against immune attack. The in vivo activation of
complement can lead in some instances to self-injury; often in vivo activation is
accompanied by a drastic reduction in serum levels of certain components. In
addition to pathological changes, components may be reduced or absent from
serum for genetic reasons. The genetic lack of a component may be associated with
pathological changes; however, this is not always the case. Problems concerning
the significance of complement in clinical states are being intensively investigated
and clarification of many of them is only a matter of time.

The recent revival of the properdin or alternative pathway demonstrates that
there are several pathways within the complement system designed to permit
activation of the various functions; such backup systems testify to the importance
of complement in the preservation of the species; the ubiquity of complement
among vertebrates also testifies to the evolutionary significance of complement.
Complement seems so important in the individual that, at birth, most animals have a
functional complement system. Studies in phylogeny and ontogeny of complement
have raised questions of the genetic control and origin of complement. A new and
exciting area of research is the genetic mapping of linkages of complement compo-
nents: such studies may cast some light on the molecular evolution of complement.

During the last decade, we have also learned much about where complement is
produced. Not only is the organ site of synthesis known for many of the compo-
nents, but even the cell types producing complement have been identified in many
cases.

On the biochemical side, the molecular structure of several components is
being determined. In some instances, polypeptide chains have been identified and
amino acid sequencing studies have been initiated. Without doubt such studies will
be performed for most if not all components during the next decade. v

It should be evident to the reader that even a book of this type cannot cover all
that is known about complement. The treatment of the subject is necessarily
weighted according to the points of view and special concerns of the individual
authors. Thus omissions may have occurred. All in all, however, the editors have
gathered together much new material in easily readable chapters that should make
an exciting and adventurous journey through the complement system.

Tibor Borsos
National Cancer Institute, NIH
Bethesda
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Biochemistry
and Biology of
Complement Activation

W. OPFERKUCH and M. SEGERLING

1. Introduction

The immunological response of the organism to a foreign antigen involves both the
humoral and cellular immune system. When antigen is recognized by humoral
antibodies, this recognition step is the trigger of a biological reaction mediated by
the complement system. The complement system, therefore, may be considered as
the effector and amplification system of the humoral immune reaction.

The complement system consists of eleven distinct components, and thus far,
seven -inhibitors of single components have been described (Austen, 1974; Lepow,
1971, Mayqr, 1973; Miiller-Eberhard, 1974; Nelson, 1974; Rapp and Borsos, 1970)
(see Section 3).

The single components exist in serum in an inactive precursor form. When
activated, they react with each other in a certain sequence, during which various
biological activities are generated. It is now well established that the complement
system not only represents an important part of the host’s defense mechanisms, but
is also involved in various pathological processes.

Most of the biochemical events in each individual activation step and the
interactions of the single components have been elucidated. The study of the
immune hemolysis by antibody and complement has proved to be a fruitful model! in
these investigations. However, although observations made in vitro probably
reflect what is happening biologically in vivo, one should be aware that in vitro
observations may represent only a narrow section of thé total complement activity
in vivo. The latter is of complex nature and comprises not only the interactions of
the eleven components, but also the influence of the inhibitory mechanisms by

W. OPFERKUCH and M. SEGERLING e [nstitute for Medical Microbiology. Ruhr-University
Bochum, Postfach 2148, D-4630 Bochum, Germany
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which it is balanced and moderated. In addition, the complement system is also
connected in a poorly understood manner with other serum protein systems. e.g.,
with the blood-clotting, kinin, and plasmin systems (Kaplan and Vogt, 1974).
Therefore, complement activity in vivo does not necessarily imply that the final
step, the lysis of an invading parasite or other target cells, will be reached. Already,
early events during the activation of complement in connection with the other
serum protein systems cause considerable biological activities, amplifying the
inflammatory processes in a beneficial or deleterious way.

This chapter will discuss the action and biochemistry of complement, obtained
from in virro experiments, in regard to possible concepts and aspects of its mode of
action in vivo.

2. Biochemistry of Complement Activation

Biochemical data and the concentrations in human serum of each of the eleven
known complement components are listed in Table 1. If the reaction sequence is
started by immune complexes, it is called the classical pathway of complement
activation. In addition to this pathway, a so-called alternative pathway is known, in
which activation of the complement sequence starts when the third component
becomes activated by the properdin system (Pillemer ef al., 1954) (see Chapter 2).
Once activation is initiated, the components react sequentially in a cascade-like
manner, by which some of them gain enzymatic activity (see Figure 1). Immune
complexes normally initiate the activation of the complement sequence by binding
to, and thus activating, the first component. In general, immune complexes consist-
ing of IgG or IgM antibodies are effective in binding the first component of
complement (Ishizaka er al., 1966). Of sublasses of human IgG, y, and v, bind and
activate C1 readily, y; binds poorly (Ishizaka et al., 1967), and -y, cannot bind at all
(Augener er al., 1971). IgA, IgD, and IgE have no complement-binding capacity
(Ishizaka er al., 1970). The chemical structure of the antibody molecule reacting
with Clq is located on the Fc portion (Kehoe aad Fougereau, 1969). This part of
the molecule is exposed when the antibody has reacted with its corresponding
antigen (Valentine and Green, 1967).

TABLE 1. Proteins of the Classical Human Complement System*

Serum Relative

concentration Sedimentation Molecular electrophoretic Number

Protein (ug/ml) coefficient (S) weight mobility of chains
Clg 180 1.1 400,000 Y2 18
Cir — 7.5 180,000 B 2
Cls 110 4.5 86.000 o 1
c2 25 4.5 117,000 B3y —
C3 1600 9.5 180,000 B 2
C4 640 10,0 206,000 B 3
Cs 80 8.7 180.000 B 2
(&) 75 5.5 95.000 B 1
C7 58 6.0 110.000 B 1
CR 80 8,0 163.000 Y 3

9 230 4,5 79,000 o

‘Keprinted from Mulier-Fherhard. Ho 30 19750 A Rev. Brod lem. 34:697.



2.1. Activation of the First Component

Dose-response experiments have shown that a single IgM molecule can fix C1,
whereas two closely spaced IgG molecules (doublet) are required (Borsos and
Rapp, 1965). '

C1 is a macromolecule consisting of three distinct subunits: Clq, Clr, and Cls
(Lepow er al., 1963). Their molecular weights are listed in Table 1. The integrity of
the molecule is calcium ion-dependent, and the subunits can be dissociated by
chelating agents (Lepow et al., 1963) and high ionic strength (Colten et al., 1968).
Both processes are reversible. Present evidence suggests that the activation of C1 is
an internal step within the macromolecule, which is dependent on time and temper-
ature. The subunit Clgq is attached to the antibody of the immune complex (Calcott
and Miiller-Eberhard, 1972) and after it has been fixed, it converts Clr into a
peptidase-like enzyme (CIr) (Valet and Cooper, 1974a). The biochemical event
leading to Clr activation is still unknown. Cls is a proesterase and is activated by
CIr to become an active esterase (Naff and Ratnoff, 1968; de Bracco and Stroud,
1971, Valet and Cooper, 1974b). The activation of Cls results in the cleavage of its
polypeptide chain (Sakai and Stroud, 1973).

Studies of the behavior of the C1 molecule by different chemical treatments
and various purification methods suggested that Clq may consist of at least three
different polypeptide chains (Opferkuch, 1967). This view was supported by the
finding that C1 activity after ultracentrifugation at high ionic strength was recovered
in the same region as serum albumin (Colten et al., 1968), revealing that the Clq
molecule consists of different noncovalently linked polypeptide chains. Structural

3
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of the activated neutralisation Opsonization Cell - killing

Figure 1. Diagrammatic representation of the classical and alternative pathways of complement activation.
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analysis and electron microscopy of purified Clq led to the development of two
models. The first one proposes that Clq is composed of six identical noncovalently
bound subunits, and the second one assumes the existence of two different polypep-
tide chains (Shelton er al., 1972; Calcott and Miiller-Eberhard, 1972). The nonlinear
dose-response curve of serum C1 indicates the existence of a hitherto unrecognized
factor, which influences the activation of the C1 molecule (Loos et al., 1973). A
similar observation was made when a kinin fragment was added during C1 titration
(Gigli et al., 1971). Recently, Assimeh and Painter (1975) have presented evidence
for the existence of a fourth subcomponent of C1, Clt.

2.2. Generation of the 42 Enzyme (C3-Convertase)

The natural substrates of the Cl-esterase are the components C4 and C2
(Becker, 1956; Lepow et al., 1956a; Lepow et al., 1956b). Both are split into two
fragments: a major one, which represents the activated component, and a small
polypeptide fragment, which can be detected in the fluid phase. The C4 molecule
consists of three polypeptide chains (a, B, and ) that are linked by disulfide bonds
(Schreiber and Miiller-Eberhard, 1974). During activation of C4, a small polypep-
tide fragment called C4a (6000-7000 daltons mol. wt.), is cleaved from the a chain
by Cls (Patrick er al., 1970; Budzko and Miiller-Eberhard, 1970), thus uncovering
the binding site of activated C4, C4b. Simultaneously, a second functional area is
exposed, which represents a very stable binding site for C2 (Miiller-Eberhard et al.,
1967). Recent studies (Cooper, 1975) showed that this binding site might be located
on the « chain. C4b molecules, bearing oxidized human C2, were not accessible to a
C4b inhibitor that splits the « chain into the «, and «; fragments (Cooper, 1975). The
combining site of the C4 molecule has a very short half-life and undergoes rapid
decay unless it becomes bound to its corresponding receptor.

Due to the short half-life of its membrane binding capacity, only about 109% of
activated C4b is actually bound to the cell membrane, whereas 90% can be detected
in a hemolytically inactive state in the supernatant (Polley and Miiller-Eberhard,
1966). Nevertheless, the activation of C4 has an amplifying effect on the further
complement reaction. The high serum level of C4 enables a single activated, bound
C1 molecule to assemble at least 200 molecules of C4b around its hemolytic site,
which could be shown by the uptake of radioactively labeled C4 (Cooper and
Miiller-Eberhard, 1968) and by hemolytic analysis of the SAC42 intermediate
(Opferkuch er al., 1971a: Borsos and Opferkuch, 1970).

[t has been reported that in the presence of magnesium ions, the native C2
molecule and activated C4 can form a loose inactive complex either in the fluid
phase or in a cell-bound state (Sitomer ez al., 1966). Interaction of the CTs esterase
with C2 results in splitting of the C2 molecule into two fragments. The larger one,
C2a. remains bound to the C4b, thus representing the activated 42 enzyme or C3-
convertase (Polley and Miiller-Eberhard, 1968). The molecular weight of activated
C2 (C2a) is about 33,000 daltons less than that of the native molecule. The
polypeptide which is split from the C2 molecule could not be isolated, and little is
known as to whether the C2b fragments consist of single polypeptide chains or
whether they are even split further into more pieces (Mayer et al., 1967; Polley and
Muller-Eberhard, 1968). The 42 enzyme has proteolytic activity and its natural
substrates are C3 and CS (Miiller-Eberhard et al., 1967; Shin and Mayer, 1968; Shin
et al., 1968). s



Treatment of human C2 with critical amounts of iodine results in a marked
increase of hemolytic activity and a prolonged half-life stability of the activated C42
enzyme (Polley and Miiller-Eberhard, 1967). It is assumed that the C2 molecule
undergoes a chemical modification after iodine treatment, which is supported by the
following observations: Inactivation of C2 by binding of p-chloromercuribenzoate
»-CMB) indicates the presence of free, reactive SH groups (Leon, 1965). Upon
iodination, the SH groups are oxidized and form intramolecular disulfide bonds, and
the C2 molecule is no longer accessible to the binding and inactivation of p-CMB.
However, after mild chemical reduction of the iodinated C2, both increased hemo-
lytic activity and prolonged enzymatic stability return to values of native, untreated
C2, arfd hemolytic activity can be inactivated by p-CMB (Polley and Miiller-
Eberhard, 1967).

The C42 enzyme is unstable and undergoes a time- and temperature-dependent -

inactivation (Mayer et al., 1964; Borsos et al., 1961b). During this process, activated
C2a is converted into the inactive form C2d (Stroud er al., 1966), which is released
from the C4b molecule into the fluid phase. The activity of the C42 enzyme can be
restored when another activated C2a molecule is bound to its receptor on the C4b
molecule. Recently it could be shown that a cell-membrane (Hoffmann, 1969a,b) and
a serum-associated factor (Opferkuch er al., 1971a) accelerate the natural inactiva-
tion of C2a. These factors are probably the reason for the natural decay.

2.3. Activation of the C3 Molecule and Its Antigenic Properties

The C3 molecule consists of two polypeptides (« and B chain), which are linked
by disulfide bonds (Nilsson ez al., 1975). When C3 is activated by the 42 enzyme (C3-
convertase), a small fragment, C3a (about 9000 daltons mol. wt.) (Bokisch et al.,
1969), is split off the N-terminal part of the a chain (Nilsson and Mapes, 1973). The
larger fragment, C3b, represents the activated component, which in its nascent state
forms a triple complex with the C3-convertase, the 423b enzyme; and C3b becomes
firmly bound to the cell membrane (Miiller-Eberhard et al., 1966).

Once C3b is activated and bound to the cell membrane, its hemolytic activity is
very stable. C3b fulfills important biological functions in phagocytosis and possibly
in the humoral immune response (see Section 4.3).

C3b can be enzymatically degraded by a naturally occurring inactivator (C3b
inactivator), as will be discussed later. The resulting fragments are C3c and C3d
(Ruddy and Austen, 1971). C3d remains bound to the cell surface and censists of
polypeptides that were originally part of the « chain. The second split product, C3c,
can be recovered from the supernatant and is composed of the B8 chain and parts of
the « chain. All these split products—C3a, C3b, C3c, and C3d—bear distinct
antigenic determinants, against which specific antisera have been raised (Pondman
and Rother, 1972; Molenaar er al., 1974).

2.4. The Role of Activated C5 and the Formation of a C5b6789
Complex

Similar to the C3 molecule, C5 is composed of two polypeptide chains (« and
B). which are linked by disulfide bonds (Nilsson er al., 1975). The C423b enzyme
splits a polypeptide of molecular weight of between 9000-15,000 daltons from the
N-terminal part of the « chain (Shin er al., 1968; Cochrane and Miiller-Eberhard,
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