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Preface

urbine engineers and designers have made remarkable

improvements in the efficiency and reliability of industrial

steam turbines over the last 30 vears. Remarkable improvements
have been achieved for products that already had over 100 years of
technical development behind them. For most of those first 100 years,
the analysis of turbine blades had concentrated on the behavior of
individual blades. A key change, and one of the most significant
advances in turbine reliability, was the development and application
of analytical techniques that make it possible to characterize and
explain the behavior not simply of individual turbine blades, but of
entire bladed disk assemblies.

Advancements in modal analysis and testing, fatigue analysis,
creep analysis, fracture mechanics, aerodynamic theories, and the
development of many new materials and manufacturing processes
cleared the path for the design of more powerful, more efficient, and
more reliable turbines. It became evident that design of blades is a
multidiscipline activity. For a proper reliability assessment of a design,
one needs to understand many fields of science and these must be
applied as need be. These advancements helped designers to extend
the capabilities of designs beyond past experience. This also helped to
explain past successes and failures of components.

The simultaneous development of powerful and inexpensive
computers has made it practical to quickly and efficiently carry out the

calculations necessary to apply these advanced analytical techniques
to the routine design of new and replacement blades and rotors for
industrial steam turbines. Nowhere have these advances had a greater
influence than on the design of critical service process compressor
drives for the refining and petrochemical industries. Large drivers for
ethylene and LNG processes exceeding 75 MW in power are in
successful service. Older designs using double-flow exhausts with
short, but very strong, blades have been supplanted in newer designs
by single-flow exhausts with taller, but more reliable and aero-
dynamically sophisticated, stages. Inlet pressure and temperatures of
2000 psig/1000°F (140 barg/540°C) have become almost common in
new process drive applications.
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Preface

The purpose of this book is to introduce these advances in a
concise volume and provide an easy-to-understand reference for
practicing engineers who are involved in the design, specification,
and evaluation of industrial steam turbines in general, and critical
process compressor drivers in particular. This text has also attempted
to present a unified view of concepts and techniques needed in the
understanding of blade design. It includes some advanced concepts
such as life estimation. One chapter is dedicated in introducing the
reader and designers to the effect of uncertainty of input variables on
the reliability of the design. Probabilistic-type analysis is introduced
for reliability estimation, as it is said that every design decision has
some risk associated with it and risk may be managed if it is known.

We would like to thank each person and the many industries
whose works have been referenced in the book. We also take this
opportunity to apologize to those whose work might not have been
referenced by mistake. Thanks to the many associates during our
employment and consulting work whose thoughts guided the
selection of many materials. We hope these will help readers in their
work or at least make them think. Last but not the least, many thanks
to Seema Singh for reading the manuscript word by word and making
numerous suggestions for changes that made the work better and
more readable.

Murari P. Singh, Ph.D.
George M. Lucas, PE
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1.1

CHAPTER 1
Introduction

Importance of Blades in Steam Turbines

Structural integrity of all rotating components is the key for successful
operation of any turbomachinery. This integrity depends on the suc-
cessful resistance of the machine parts to the steady and alternating
stresses imposed on them. The challenge with rotating equipment,
such as turbomachinery, is often more severe due to the significance of
the alternating loads that must be carried to satisfy their purpose.

One of the major classes of rotating machinery is the mechanical
drive steam turbines, i.e., steam turbines that drive pumps and/or
compressors. These steam turbines are differentiated from those that
drive generators in that they operate at variable speeds. Steam
turbines may operate from 1 to 5 hp up to several hundred thousand
horsepower; they may operate with steam that ranges from vacuum
to thousands of pounds per square inch; and blade tip speeds can
exceed the force of the most severe hurricane (a large, last blade row
with an 8-ft tip to tip diameter operating at 3600 rpm will experience
tip speeds in excess of 1000 mph).

One of the causes of blade deterioration is static stress which is
primarily the result of steam bending and centrifugal loads. Alter-
nating stresses are imposed due to the vibration of the parts in
question, e.g., blades and disks. If the combined loads become too
large, vibration-induced fatigue of the rotor blades or disks is a
major concern. In addition to the imposed loads, these forces are
subject to resonant amplification caused by coincidence with natural
frequencies. To put the scope of this problem into context, one must
realize that there may be thousands of blades in a steam turbine.
For example, there may be 10 to 20 rows of different blade designs
with the possibility of each blade row having different dynamic
characteristics.

Steam turbines have been in operation for more than 100 years
and have always faced this problem. As may be imagined, the tech-
nology in engineering and physics to support these designs has
grown dramatically over that time; tools have been enhanced and
technological developments incorporated.



2 Chapter One

1.2 Brief Historical Perspective of
Technological Development

The current state of design, as represented in the API standards for
this class of machinery, sets a life of 30 years for all components. In
many cases, this translates into a design requirement for infinite life
and may exceed the needs of a specific installation. This requirement
may be driven by the actual desire for infinite life, limitations in
analysis techniques, tools that have existed over the years, and/or an
incomplete understanding of the tools that have appeared in the
recent past and are currently fully or partially available.

A common cause of vibration-related failure in steam turbine blad-
ing is resonant excitation of the blading occurring at an integral order,
i.e., multiples of the rotational speed, nozzle passing frequency, and
multiples thereof. The associated mode of failure is high cycle fatigue.
A primary feature of resonant excitation is that dynamic stress ampli-
tudes rise as the exciting frequency approaches the resonant speed and
the response decreases after passing through the resonant speed.
Hence, it is necessary to identify resonant frequencies of the system.

It is impossible to include all the work done by the numerous
researchers and designers of steam turbine blades. Effort is made to
include some of those that describe the progress and current method-
ology for steam turbine blade design. Many textbooks were published
on steam turbines during the last century together with many techni-
cal publications dealing with all aspects of turbine design, specifi-
cally blade design. Early publications by Stodola (1905) and Kearton
(1922) are worth mentioning because these two books are credited
with setting the stage for detailed vibration and reliability analysis
for blades. In many different ways designers followed the processes
and methods outlined in these books. As the turbine design matured
and manufacturers gained experience, methods were adjusted to
include new technical methods and lessons learned from field experi-
ence and each manufacturer has evolved its own methods and criteria
to achieve successful design. Hence, methods and criteria should not
be expected to be consistent across manufacturers.

Blade design has evolved from the analysis of spring-mass sys-
tems to a single cantilever beam to a band of blades to a bladed disk.
In addition, steam turbines have included bands of blades on a disk as
a system. Throughout the years many effects of turbine speed to
increase blade frequency were found, and it gave rise to the term
centrifugal stiffening. Campbell (1925), while examining the failure
(bursting) of disks, concluded that blades were broken due to axial
vibration. This publication reported the results of an investigation
conducted at General Electric to understand the wheel failures, mostly
in wheels of large diameter, that could not be explained on the basis of
high stress alone. About this time certain types of vibrations of standing
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waves were investigated by means of sand pictures. This test was con-
ducted by scattering sand over the wheel surface. Wheels were then
excited by means of a magnet exciter, and the turbine wheel was placed
in a horizontal position. An electromagnet was clamped with its poles
close to the edge of the wheel, alternating current was passed through
the coils of the magnet, and a series of pulls was exerted on the wheel.
This resulted in deflecting the wheel in a transverse direction to the
plane of the wheel. A variable-speed direct-current (dc) motor was
used to drive the alternating-current (ac) generator and allowed the
frequency of the pull of the magnet to be varied over a wide range.
Frequency of excitation was varied until a sand pattern on the wheel
appeared, and sand accumulated mostly in a radial line or pattern.
When the frequency changed to some higher magnitude, a different
sand pattern appeared on the wheel. These radial lines represented the
location where the velocity of vibration was zero. The number of radial
lines was always observed to be of an even number. These patterns, are
known as nodal patterns, and two lines are taken as one diameter. It is
now understood that the opposite radial lines might not be 180° apart.
Frequencies at which these patterns are observed coincide with the
natural frequency of the wheel in axial vibration associated with the
mode shape represented by the sand pattern.

Figure 1.1 shows a picture of such a sand pattern. It is noticeable
that sand has collected on certain portions of the wheel, and it forms a
pattern showing four radial lines. This pattern is referred to as two
nodal diameters mode. There are six radial lines in the pattern shown in
Fig. 1.2. These modes are called three nodal diameters mode. Note that
the radial lines pass through the balancing holes in the left picture while
in the picture on right side these lines pass between the balancing holes.
A detailed discussion of this phenomenon that forms the basis of bladed
disk analysis is provided in Chap. 5.

Over time blades needed to be taller to accommodate the require-
ment of increasing power. This necessitated the blades to be joined
together by a band of metal either at the tip or somewhere along the
length of the blade. Kroon (1934) described a method to evaluate the
effectiveness of such construction to reduce the dynamic response of
the design under steam forces. Allen (1940) described design practices
of blades in high-pressure and high-temperature stages. A detailed
explanation for partial stage admission was included, as was one for
full admission stage. Allen recommended limiting the number of
blades per group to two for high-temperature service and argued that
more blades in a group for high-temperature application tend to set
up high stress. Two types of root attachment (axial entry vs. tangential
entry) construction were explored, and the choice is dependent on the
application, e.g., speed, power, and temperature. The effect of shroud-
ing might be considerable for high-pressure blades. A reduction of 25
to 60 percent in bending stress may be achieved. The natural frequency

3



