Lecture Notes in

Computer Science 1946

~ Philippe Palanque Fabio Paternd (Eds.) |

Interactive Systems
Design, Speciﬁcation, and Veriﬁcation ;

7th International Workshop, DSV-IS 2000
~ Limerick, Ireland, June 2000
Revxsed Papers :

| &g%égﬁ Springer =

Philippe Palanque Fabio Paterno (Eds.)

Interactive >ysieius

Design, Specification, and Verification

7th International Workshop, DSV-IS 2000
Limerick, Ireland, June 5-6, 2000
Revised Papers

Springer

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Philippe Palanque

LIHS University Toulouse 1

Place Anatole France, 31042 Toulouse Cedex, France
E-mail: palanque @univ-tlsel.fr

Fabio Paterno

Consiglio Nazionale delle Ricerche, Istituto CNUCE
Via V. Alfieri 1, 56010 Ghezzano-Pisa, Italia

E-mail: F.Paterno @cnuce.cnr.it

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Interactive systems : design, specification, and verification ;
7" international workshop ; revised papers / DSV-IS 2000,
Limerick, Ireland, June 5 - 6, 2000. Philippe Palanque ; Fabio Paterno
(ed.). — Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London ;
Milan ; Paris ; Singapore ; Tokyo : Springer, 2001
(Lecture notes in computer science ; Vol. 1946)
ISBN 3-540-41663-3

CR Subject Classification (1998): H.5.2, H.5, 1.3, D.2, F.3

ISSN 0302-9743
ISBN 3-540-41663-3 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are

liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York

a member of BertelsmannSpringer Science+Business Media GmbH
© Springer-Verlag Berlin Heidelberg 2001

Printed in Germany

Typesetting: Camera-ready by author, data conversion by PTP-Berlin, Stefan Sossna
Printed on acid-free paper SPIN: 10780903 06/3142 543210

Lecture Notes in Computer Science 1946
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

Springer
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Preface

The wait for the year 2000 was marked by the fear of possible bugs that might have
arisen at its beginning. One additional fear we had during this wait was whether or-
ganising this event would have generated a boon or another bug.

The reasons for this fear originated in the awareness that the design of interactive
systems is a fast moving area. The type of research work presented at this unique
event has received limited support from funding agencies and industries making it
more difficult to keep up with the rapid technological changes occurring in interaction
technology.

However, despite our fear, the workshop was successful because of the high-quality
level of participation and discussion.

Before discussing such results, let us step back and look at the evolution of DSV-IS
(Design, Specification and Verification of Interactive Systems), an international work-
shop that has been organised every year since 1994.

The first books that addressed this issue in a complete and thorough manner were
the collection of contributions edited by Harrison and Thimbleby and the book written
by Alan Dix, which focused on abstractions useful to highlight important concepts in
the design of interactive systems. Since then, this area has attracted the interest of a
wider number of research groups, and some workshops on related topics started to be
organised. DSV-IS had its origins in this spreading and growing interest. The first
workshop was held in a monastery located in the hills above Bocca di Magra (Italy).
The event has been held in Italy, France, Belgium, Spain, U.K, Portugal and Ireland,
under the auspices of Eurographics, with proceedings regularly published by Springer-
Verlag.

After 10 years of research some considerable results have been achieved: we have
built a community working on these topics; several projects (European, National,
Industrial) have been carried out; various books, journal publications and other related
events have been produced; and first industrial products, automatic tools and applica-
tions are also appearing based on such approaches.

However, we must admit that interest is growing less quickly than in other areas
(Web, mobile communication, usability, ...). The number of new groups working in
this area is increasing gradually. One reason is that time-to-market is a crucial factor
in industry (and academia!), and consequently more elaborated approaches are less
attractive.

To further promote the event and the related topics, we decided to hold it as an
ICSE workshop. ICSE is the major international software engineering conference, and
we aimed at expounding the topic to this community in order to facilitate interaction
and stimulate multidisciplinary approaches and to reach a wider audience. Our pro-
posal was accepted by the ICSE organising committee.

We received 30 submissions from 13 countries. Each paper was reviewed by at
least three members of the Programme Committee, and the final selection was made at
a meeting held at CHI'2000. Refined versions of less than half of these submissions
were selected for inclusion in this book.

The workshop provided a forum for the exchange of ideas on diverse approaches to
the design and implementation of interactive systems. The particular focus of this

VI Preface

year’s event was on models (e.g., for devices, users, tasks, contexts, architectures, etc.)
and their role in supporting the design and development of interactive systems.

As in previous years, we still devoted considerable attention to the use of formal
representations and their role in supporting the design, specification, verification,
validation and evaluation of interactive systems. Contributions pertaining to less for-
mal representations of interactive system designs and model-based design approaches
were also encouraged.

During the workshop discussion and presentations were grouped according to a set
of major topics: Designing Interactive Distributed Systems, Designing User Interfaces,
Tools for User Interfaces, Formal Methods for HCI and Model-Based Design of Inter-
active Systems.

At the end of the sessions participants were split into discussion groups. One aspect
that attracted the attention of the participants was the book "What is in the future of
software engineering” that was distributed to all ICSE participants: we noticed the
complete lack of a chapter addressing human-computer interaction. Thus, we feel that
these proceedings also have an additional role: to provide the background information
for the missing chapter, that on software engineering for human-computer interaction.
This lack underscores how the academic community has not yet completely under-
stood the importance of this subject and the importance of the research area aiming at
identifying ergonomic properties and improving the design process so that such ergo-
nomic properties are guaranteed in the software systems produced.

If we consider the HCI map proposed in the HCI curriculum produced by ACM
SIGCHI we notice that each component (user, computer, development process, use
and context) is evolving very rapidly.

It becomes crucial to identify a design space indicating the requirements, modelling
techniques, tools, metrics, architectures, representations and evaluation methods char-
acterising this area.

In addition, the research agenda for this field is dense: it includes extending models
to deal with dynamicity (mobile users, ...), develop analysis techniques for making
use of the models, more tools for usability evaluation, multi * approaches (multimedia,
multi users, multi modal, ...) and end user programming.

We think that the reader will find the material presented in this book useful in un-
derstanding these issues, and we sincerely hope it will also prove to be useful in
stimulating further studies and improving current practise.

September 2000 Philippe Palanque and Fabio Paternod

Programme Committee

Ann Blandford

University of Middlesex, U.K.

Alan Dix University of Huddersfield and aQtive Ltd.
David Duce Oxford Brookes University, U.K.
David Duke University of Bath, U.K.
Giorgio Faconti CNUCE-C.N.R., Italy
Miguel Gea University of Granada, Spain
Nicholas Graham Queen’s University, Canada
Michael Harrison University of York, U.K.
Robert Jacob Tufts University, U.S.A.
Chris Johnson University of Glasgow, U.K.
Peter Johnson University of Bath, U.K.

Fernando Mario Martins University of Minho, Portugal

Panos Markopoulos IPO, University of Eindhoven, The Netherlands
Philippe Palanque (Co-chair) LIHS, Université Toulouse I, France
Fabio Paterno (Co-chair) CNUCE-CNR, Italy
Angel Puerta Stanford University and Red Whale, U.S.A.

Jean Vanderdonckt Université Catholique de Louvain, Belgium

Sponsoring Organisations

Eurographics
The European Association for Computer Graphics

Tha 22nt Intamaetonal Conference cnSoftware Engiraedng E__——"—8
Limerick. Ireland

Contents

Designing Interactive Distributed Systems

Specifying Temporal Behaviour in Software Architectures for

OTOUDWATE SYSTCTINS 3 cxrcusns susssreovssmmnsss swisiossasssns s smsssssisss SEasss ST S EOs T AR RIS 1
Timothy N. Wright, T.C. Nicholas Graham
(Queen’s University) and
Tore Urnes (Telenor Research and Development)

Questioning the Foundations of Utility for Quality of Service in

Interface DeVEIOPMENLc.ocuiiiiiiiiiiiiiiieiee e 19
Chris Johnson (Department of Computing Science,
University of Glasgow)

Designing User Interfaces

A Framework for the Combination and Characterization of

Output MOAalItIeseeeiuiiiiiieiiiiiiieieeie ettt ee e e eneeenes 35
Frédéric Vernier and Laurence Nigay
(CLIPS-IMAG, Grenoble)

Specifying Multiple Time Granularities in Interactive Systemsccccccoeveveuennne. 51
Maria Kutar, Carol Britton and
Chrystopher Nehaniv (University of Hertfordshire)

Verifying the Behaviour of Virtual Environment World Objects............ccccouveene.... 65
James S. Willans and Michael D. Harrison
(HCI Group, University of York)

Tools for User Interfaces

SUIT - Context Sensitive Evaluation of User Interface Development Tools........... 79
Joanna Lumsden and Philip Gray
(Department of Computing Science, University of Glasgow)

Structuring Interactive Systems Specifications for Executability and

Prototypabilitycooiiiiiiiiiiiii s 97
David Navarre, Philippe Palanque, Rémi Bastide
and Ousmane Sy (LIHS, University Toulouse 1)

A Toolkit of Mechanism and Context Independent Widgets............ccccocueurrerunnnes 121
Murray Crease, Philip Gray and Stephen Brewster
(Department of Computing Science, University of Glasgow)

X Contents

Formal Methods for Human-Computer Interaction

Integrating Model Checking and HCI Tools to Help Designers
Verify User Interface Properties..........cccoevvieieieioiieieseseeeeeeeeeeee e 135
Fabio Paterno and Carmen Santoro (Instituto CNUCE-CNR)

More Precise Descriptions of Temporal Relations within Task Models 151
Anke Ditmar (University of Rostock)

Formal Interactive Systems Analysis and Usability Inspection Methods:

Two Incompatible Worlds?cccooiiiiiiiiiii e 169
Karsten Loer and Michael Harrison
(BAE SYSTEMS Dependable Computing Systems Centre,
University of York)

Model-Based Design of Interactive Systems

Wisdom — A UML Based Architecture for Interactive Systems...............c..coo....... 191
Nuno Jardim Nunes (Universidade da Madeira,
Unidade de Ciéncias da Computag¢do) and
Jodo Falcao e Cunha, (Universidade do Porto, GEIN,
Faculdade de Engenharia)

User Interface Declarative Models and Development Environments:

A SUIVEY w cvossvswnessonsnssssusss s ssmsvssssssiasss s oia s os i o o s T s aTANT S5 00505 454 ¥asbemasesesmnsansans 207
Paulo Pinheiro da Silva (Department of Computer Science,
University of Manchester)

The Task-Dialog and Task-Presentation Mapping Problem:

Some Preliminary Results........c..cccoiiiiiiiiininiiieci e 227
Quentin Limbourg, Jean Vanderdonckt, and Nathalie Souchon
(Université catholique de Louvain, Institut d'Administration et
de Gestion)

Indexes
SUbJECt INAEX ...t 247

AULNOT INA@X ..ot e e e e e e et ea e e e e e e e e eeenneas 251

Specifying Temporal Behaviour in Software
Architectures for Groupware Systems

Timothy N. Wright!, T.C. Nicholas Graham?, and Tore Urnes’

! University of Canterbury, Private Bag 4800, Christchurch, New Zealand
tnwl3@cosc.canterbury.ac.nz

2 Queen’s University, Kingston, Ontario, Canada K7L 3N6
graham@cs.queensu.ca
3 Telenor Research and Development, P.O. Box 83, N-2007 Kjeller, Norway
tore.urnes@telenor.com

Abstract. This paper presents an example of how software architectures can
encode temporal properties as well as the traditional structural ones. In the
context of expressing concurrency control in groupware systems, the paper
shows how a specification of temporal properties of the semi-replicated
groupware architecture can be refined to three different implementations, each
with different performance tradeoffs. This refinement approach helps in
understanding the temporal properties of groupware applications, and increases
confidence in the correctness of their implementation.

1 Introduction

Software architectures traditionally decompose systems into components responsible
for implementing part of the system, and connectors enabling communication
between these components. Components implement some part of the system’s
functionality, while connectors specify the form of intercomponent communication,
for example, through method calls or events [28]. We refer to these as structural
properties of the architecture.

In synchronous groupware applications, it is not only important to capture how
components may communicate, but when. For example, in a multiuser video
annotation system, it is important that all participants see and annotate the same frame
[14]. In a shared drawing application, it is important that the drawing operations of
participants do not conflict, for example with one person deleting a drawing object
that another is moving. As the paper will show, such requirements on sequencing of
updates and synchronization of shared state can be expressed as restrictions on when
messages can be passed between components involved in an interaction.

This paper investigates how software architectures can specify temporal properties
of an application as well as structural ones. From these temporal specifications, a
variety of implementations can be derived, embodying different execution properties.
This allows an approach where software architectures specify high level temporal
properties of implementations, allowing architecture implementers to plug-replace
any implementation meeting these properties.

P. Palanque and F. Paterno (Eds.): DSV-IS 2000, LNCS 1946, pp. 1-17, 2001.
© Springer-Verlag Berlin Heidelberg 2001

2 T.N. Wright, T.C.N. Graham, and T. Urnes

| aut

Fig. 1. A Groupware Drawing Program. This program was implemented in Java using the
TeleComputing Developer Toolkit (TCD) [1].

As will be shown in the paper, the benefits of this approach are:

— Difficult temporal properties of groupware applications can be treated orthogonally
to the application’s functionality by embedding these properties in the software ar-
chitecture;

— Premature commitment to algorithms implementing temporal properties can be
avoided, as early design of the system focuses on desired behaviour rather than on
algorithms implementing that behaviour;

— The process of specifying properties and refining implementations increases confi-
dence in the correctness of the implementations and provides a clearer under-
standing of the temporal properties of the application.

In order to demonstrate this approach, we take the example of the implementation of
concurrency control in a semi-replicated groupware architecture. We show how
concurrency control properties can be encoded in the definition of the semi-replicated
architecture itself. Specifically, we treat the problem of ensuring that transactions
performed on shared data state are serializable, guaranteeing that operations per-
formed by users do not conflict.

As we shall see in the paper, concurrency control algorithms are complex, and em-
body trade-offs of degree of consistency versus response time. It is therefore benefi-
cial to separate the specification of the desired concurrency properties of an applica-
tion from the concurrency control algorithm actually implementing it. To demon-
strate this assertion, the paper is organized as follows. Section 2 describes the
concurrency control problem in groupware, and introduces a simple groupware
drawing tool as an example application. Section 3 introduces the widely used semi-
replicated implementation architecture for groupware, and shows how it can be de-
scribed to possess temporal properties ensuring correct concurrent behaviour. In
order to show the flexibility of such a specification, sections 4 through 6 introduce the
locking, Eager and adaptive concurrency control algorithms as implementations re-

Specifying Temporal Behaviour in Software Architectures for Groupware Systems 3

fined from the semi-replicated architecture. These algorithms have all been imple-
mented as part of the TeleComputing Developer (TCD) groupware development tool-
kit [1].

2 Motivation

To introduce the concurrency control problem and to motivate our approach of en-
coding temporal properties of applications in the software architecture, we present a
simple groupware drawing program. As shown in figure 1, users may draw simple
objects such as squares and circles on a shared canvas. Each user’s actions are re-
flected in the canvases of other users in real time. In addition to standard editing op-
erations, users may scale the entire diagram up or down, in increments of 10%.

In the implementation of the drawing program, a shared data structure (or shared
context) contains the set of drawing objects. Figure 2 shows how operations for re-
sizing and scaling objects are implemented. For example, a resize operation reads the
object to be resized from the shared context, changes its size, and saves the object
back to the shared context. Similarly, the scale operation scales each of the drawing
objects in the shared context.

Figure 2 shows how concurrency problems can arise if two users simultaneously
perform a resize and a scale operation. Here, the resize operation is performed while
the scale is taking place, partially undoing the effect of the scale. This leaves the
diagram in an inconsistent state, where the scale has been applied to all elements
except the first. When two user actions lead to an inconsistent result, those actions
are said to conflict. Concurrency control algorithms are designed to prevent the
negative effects of conflicting actions.

2.1 Concurrency Control Styles

Concurrency control algorithms can be roughly divided into two classes — pessimistic
and optimistic. Pessimistic schemes guarantee that when a participant in a groupware
session attempts to modify the shared artifact, his/her actions will not conflict with the
actions of other participants. This guarantee leads to intuitive user interface behav-
iour, but at the cost of responsiveness. Optimistic approaches, on the other hand,
assume that actions will not conflict, and must detect and repair conflicts when they
occur.

4 T.N. Wright, T.C.N. Graham, and T. Urnes

Resize object “1” to Scale entire diagram

newSize by k%

n=getNumberObjects ()

ol=getObjectAt (“1")

s=getObjectAt (“1")

s.setSize(newSize) ol.scale (k)

setObjectAt(“1”,01)

setObjectAt (“1”,s) o2=getObjectAt (“2")

Fig. 2. A resize operation conflicting with a scale operation.

Under pessimistic algorithms, update transactions resulting from user actions never
fail. One way of achieving this property is to require clients to obtain a lock on the
shared context before attempting to process a new user action [22]. This locking may
reduce the potential for concurrent execution of clients and introduces networking
overhead to obtain locks.

Under optimistic algorithms, update transactions may fail, potentially requiring
work to be undone [16]. Optimistic algorithms improve performance by allowing
client machines to process user actions in parallel.

Neither pessimistic nor optimistic approaches are suitable for every application.
While optimistic approaches may provide better response times for short transactions
that are inexpensive to undo [3,29], pessimistic algorithms are preferable in the fol-
lowing three cases:

— Undo unacceptable: In some applications, it is impossible to roll back user actions
that are retroactively found to conflict with other actions. Examples of such actions
include deleting a file or sending an email message.

— Pessimistic faster: To be effective, optimistic schemes rely on conflicts being rare,
and the cost of undoing operations being inexpensive. Consider the scale operation
of figure 2. This operation performs one read and write to the shared context for
every drawing object. In a complex drawing with potentially tens or hundreds of
objects, the scale operation is likely to conflict with an operation performed by
some other user.

— Optimistic unfair: In a wide area network, some users may suffer longer latencies
than others when accessing parts of the shared context. The actions of these users
may be more likely to conflict than the actions of users with lower latency. Fair-
ness may require that users with poor network connections use pessimistic
concurrency control.

Concurrency control algorithms therefore embody tradeoffs in the desired behaviour
of systems, but all provide the basic property of guaranteeing serializability of trans-
actions carried out by participants in the groupware session. That is, the algorithm
should never permit operations to conflict as in the example of figure 2. Our approach
is therefore to encode this temporal property of transaction serializability as part of

Specifying Temporal Behaviour in Software Architectures for Groupware Systems 5

the definition of the software architecture. We then show how these temporal proper-
ties can be implemented by both pessimistic and optimistic algorithms, and by a novel
algorithm combining the two. This approach allows us to specify the desired temporal
behaviour of the architecture (i.e., transaction serializability) separately from the algo-
rithm used, avoiding premature commitment to a particular concurrency control algo-
rithm.

Server s : Model
(Shared Context)
requestLock grantLock
request respfsnse
dite noti
npas fail
¢, : Model
(Cache)
Client k

View /
Controller

Fig. 3. The semi-replicated implementation architecture for groupware: A shared context is re-
presented on a server machine. Clients contain a cache, a read-only replica of the shared con-
text. Local context does not require concurrency control, and therefore is not represented. Wri-
table replicas of the shared context are assumed to have no concurrency control, and therefore
are also not represented.

All of these algorithms have been realized using the Dragonfly [1] implementation
of the semi-replicated groupware architecture, in the TCD toolkit. In TCD, we ex-
ploit the separation of specification of temporal behaviour from its implementation,
allowing concurrency control algorithms to be plug-replaced after the application has
been developed.

3 The Semi-Replicated Architecture for Groupware

We model groupware systems using a semi-replicated architecture [15]. Semi-
replicated systems are hybrid centralized/replicated systems, where all shared state is
represented on a centralized component, some shared state is replicated to the clients,
and private state is represented on the clients. Some shared state is replicated in the
form of a read-only client cache.

Semi-replication is based on the Model-View-Controller (MVC) architecture for
groupware development [20,15]. In MVC, the shared state underlying each partici-
pant’s view is located in a model, a controller is responsible for mapping user actions
onto updates to the model, and a view is responsible for updating the display in re-

6 T.N. Wright, T.C.N. Graham, and T. Urnes

sponse to changes in the model. MVC (and related architecture styles such as PAC*
[5]) underlies a wide range of groupware development tools. Despite earlier suspi-
cion that semi-replication is inherently inefficient [21], performance evaluation has
shown this architecture to provide excellent response times, even over very wide area
networks [29].

Figure 3 shows the elements of this model that are necessary to illustrate how
concurrency control properties can be encoded within a software architecture con-
nector. The figure further shows the set of messages allowing the client and server
components to communicate. These messages are described in detail in section 3.2.

We assume that no concurrency control is applied to private state represented on
clients (since there is no concurrent access to this state), and therefore omit local
context from the model. We assume that the client cache is not writable by the client,
and therefore can only be updated by the server. We further assume that any repli-
cated state that is writable by the client has no concurrency control associated with it,
and therefore need not be included in the model. Despite what may appear to be re-
strictive assumptions, this model describes the implementation architecture of a wide
range of existing groupware development tools. (The following discussion is based
on Phillips’ survey of groupware development tools and their implementation archi-
tectures [24]).

Semi-replicated tools directly implementing this model (or subsets of the model)
include Clock [29], TCD [1], Weasel [13], Suite [9], and Promondia [12]. GroupKit
[25] is described by the model, as GroupKit environments implement shared state,
and GroupKit provides no concurrency control for replicated shared data. Figure 3
also describes systems with replicated state under centralized coordination such as
Habanero [6], Prospero [10], Ensemble [23] and COAST [27]. In these systems, a
central component is responsible for concurrency control decisions, allowing the
shared context to be modeled via a virtual server. Finally, the model describes fully
centralized systems such as RendezVous [17], as the trivial case in which there is no
replicated data at all.

Systems not described by the model include fully replicated systems using
concurrency control algorithms based on roll-backs [8] or operation transforms [11].
Such fully replicated systems include DECAF [23], DreamTeam [26], Mushroom
[19] and Villa [4].

Therefore, while this simplified treatment of the semi-replicated architecture does
not cover every possible implementation of groupware, it describes a sufficiently
large subset of current development tools to be interesting.

3.1 Encoding Concurrency Control in the Semi-replicated Architecture

In order to show how software architectures can encode temporal properties, we first
formalize our simplified version of the semi-replicated architecture, and then define
its concurrency control properties as restrictions over the treatment of messages.

As shown in figure 3, a groupware system consists of a set of client machines, each
containing a cache, and a server machine containing shared state. Clients communi-
cate with the server by issuing requests for information and updates that modify in-
formation. Parameters to requests and updates and responses to requests are all con-
sidered to be values.

Specifying Temporal Behaviour in Software Architectures for Groupware Systems 7

Client and Server Components

We let Client C-N represent a set of client machines. We define Update, Request and
Value to be disjoint sets representing updates and requests made by the
view/controller, and values returned by the model as the results of requests. We let

Time == N represent time.

Model
A Model stores data. Models are queried via requests. The values of these requests
may change over time.

Model == Time X Request — Value

If m:Model we write m(t) to represent Ar ® m(t,r),the snapshot of the model at time ¢.
As shown in figure 3, we let s:Model represent the shared context, and the family

of functions ¢, :Model represent a cache for each client k€Client. When making re-
quests, clients first consult their cache. If the response has not been cached (i.e., the
request is not in the domain of the cache), the shared context is consulted. If used
efficiently, a cache can considerably reduce the overhead of network communication

[15]. We define a request function rg, for each client k€ Client:

rq, : Time — Request — Value
rq, (t,r) ==
if r € dom (c, (1)) then
c, (t,r)
else
s (t,r)

View/Controller

The purpose of an MVC controller is to map user inputs onto updates to the model.
In computing an update, the controller makes a set of requests to the model. We for-
malize the activity of the controller through an update function, which computes an
update using values obtained from the model:

UpdateFn == seq Value — Update

An update transaction represents the application of an update function to values ob-
tained through a sequence of requests executed at given times. Transactions originate
from some client.

Transaction ==
Client X UpdateFn x seq (Time X Request)

The view/controller of each client can be thought of as executing a sequence of trans-
actions. When a user performs an action, an update to the shared state is computed,
based on values in the cache and shared context. When a client receives notification
that the shared context has changed, it computes an update to the display.

