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PREFACE

Developmental biology is both a classical and a modern
field. Beginning with Wilhelm Roux and Hans Driesch
late in the nineteenth century, a new generation of biol-
ogists ventured into the causal analysis of development.
With hand-made glass needles and hair loops, they re-
moved and transplanted parts of frog and sea urchin
embryos to see what the parts would do in isolation
and how they would interact with cells that were not
their normal neighbors. By defining a new set of terms
based on operational criteria, these scientists established
experimental embryology as a new discipline. In 1924,
Hans Spemann and Hilde Mangold published their fa-
mous “organizer” experiment, which showed that a
transplanted piece of dorsal blastopore lip could induce
surrounding host tissue to form a secondary embryo.
This powerful demonstration epitomizes the first
golden age of developmental biology.

Developmental biologists with a bent toward genet-
ics soon found an alternative way of analyzing devel-
opment. Studying mutant strains of various creatures,
they began to uncover the logic of the genetic networks
that control development. Those working with the fruit
fly Drosophila learned that mutations in certain genes
had dramatic effects on the overall body pattern, such
as the replacement of certain body parts with parts that
are normally formed elsewhere. This type of analysis
was made more powerful by the introduction of muta-
genesis screens, which can identify virtually all genes
involved in the control of a developmental process. In
the 1980s, genetic analysis was boosted again by the ar-
rival of DNA cloning; now, the proteins encoded by
patterning genes could be characterized in molecular
terms. The prospect of knowing not only the mutant
phenotypes of these genes, but also the biochemical
properties of their products, energized hundreds of re-
searchers. Today, the development of the Drosophila em-
bryo is almost completely understood in terms of a net-
work of gene activities that unfolds in a spatial order.
The spectacular success of this work is being emulated
by researchers working with other organisms. Develop-
mental biology has entered another golden age.

Living in this second golden age is exhilarating.
New and important discoveries are made every week.
Just keeping up with the ever-growing literature has
become a major effort, and so an undergraduate course
in developmental biology is now a challenge for stu-
dents and instructors alike. On the one hand, the clas-
sical foundations of development need to be preserved.
On the other hand, the current excitement in develop-
mental biology comes from bringing new and powerful
tools to bear on some of the long-standing problems in
the field. My answer to the challenge is this textbook,
which is written for advanced undergraduates and be-
ginning graduate students. I hope it will help them and
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their teachers to appreciate the rich heritage left by the
classical development biologists and to savor the power
and elegance of the new work.

The organization of the book reflects the union of
classical and modern ways of analysis in contemporary
developmental biology. Part One emphasizes classical
methods of analysis and covers the series of embryonic
stages from gametogenesis to histogenesis. Interspersed
are basic conceptual topics such as nuclear totipotency,
cell determination, cytoplasmic localization, induction,
and morphogenesis. Part Two introduces the genetic and
molecular analysis of development, beginning with a
chapter on the use of mutants, DNA cloning, and trans-
genic organisms. Subsequent chapters explain the con-
cept of differential gene expression with the goal of un-
derstanding how the genomic information is psed to
build a three-dimensional organism that unfoldstln time.
A chapter on paragenetic information provides a coun-
terpoint to the emphasis on genetic information. Part
Three freely combines classical and modern types of
analysis and should be the most enjoyable portion of
the book. It illustrates how the application of new re-
search tools has led to a better understanding of long-
standing issues in development. This part features a set
of chapters on pattern formation, one of the central top-
ics in developmental biology. Cell differentiation, sex
determination, hormonal control, growth, and the roles
of cell adhesion and extra cellular materials in mor-
phogenesis round out what should be a fair represen-
tation of contemporary developmental biology.

Facing a plethora of old and new results, I found it
important to bring out about a dozen general princi-
ples. For instance, many steps in development rely on
synergistic mechanisms that complement or reinforce
each other. Spemann referred to this as the principle of
double insurance; I introduce this principle in the con-
text of fertilization and then take it up again in chapters
on induction and genetic control. Other principles, in-
cluding stepwise approximation and default programs,
are treated in a similar fashion.

The textbook in developmental biology that I used
as a student was Alfred Kithn's Entwicklungsphysi-
ologie. I have adopted Kiihn’s habit of discussing key
experiments in some detail. When introducing trans-
genic organisms, I describe the germ line transformation
of rosy mutant fruit flies with the wild-type transgene.
This description makes it necessary to explain the method
of Southern blotting. Experiment descriptions are marked
with colored bars, and explanations of methods are
boxed. I hope that readers will find these sections es-
pecially worthwhile. Including experiment descriptions
while keeping chapters to a manageable length has made
it necessary to present materials selectively. In most
chapters, one or two subtopics are discussed in more
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depth than the others, and these subtopics are marked
with color in the list of contents for the chapter.

On various occasions throughout the text, I point
out problems whose solutions remain elusive. I hope
this will convey the spirit of science as an endeavor in
which answers bear new questions and in which one
generation passes the torch on to the next.
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Figure 1.1 Scanning electron
micrograph of a snail embryo
(llyanassa obsoleta) at the
8-cell stage. (The tiny cell at
the center is a polar body.)
The four smaller cells, or
micromeres, are rotated
clockwise relative to their
larger sister cells, or
macromeres. One macromere
is larger than the other three
macromeres because it has
incorporated a special mass
of cytoplasm. The
asymmetrical localization of
this cytoplasm endows the
largest macromere and its
descendants with specific

developmental capabilities.
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