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Preface

A Course in Linear Algebra was shaped by three major aims: (1) to present a
reasonably complete, mathematically honest introduction to the basic concepts of
linear algebra; (2) to raise our students’ level of mathematical maturity significantly
in the crucial sophomore year of their undergraduate careers; and, (3) to present
the material in an interesting, inspiring fashion, to provide motivation for the
students and give them a feeling both for the overall logical structure of the subject
and for the way linear algebra helps to explain phenomena and solve problems in
many areas of mathematics and its applications.

We firmly believe that, even today, the traditional theoretical approach to the
teaching of linear algebra is appropriate and desirable for students who intend to
continue their studies in the mathematical sciences.

With such goals in mind, we have chosen to present linear algebra as the
study of vector spaces and linear mappings between vector spaces rather than as
the study of matrix algebra or the study of numerical techniques for solving systems
of linear equations. We define general vector spaces and linear mappings at the
outset, and we base all of the subsequent developments on these ideas.

We feel that this approach has several major benefits for our intended audience
of mathematics majors (and for others as well). First, it highlights the way seemingly
unrelated sets of phenomena, such as the algebraic properties of vectors in the plane
and the algebraic properties of functions f:R — R, or the geometric behavior of
projections and rotations in the plane and the differentiation rules for sums and
scalar multiples of functions, may be unified and understood as different instances
of more fundamental patterns. Furthermore, once these essential similarities are
recognized, they may be exploited to solve other problems.

Second, our approach provides a ready-made context, motivation, and geo-
metric interpretation for each new computational technique that we present. For
example, the Gauss-Jordan elimination procedure for solving systems of linear
equations is introduced first in order to allow us to answer questions about para-
metrizations (spanning sets) for subspaces, linear independence and dependence of
sets of vectors, and the like.
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Finally, our approach offers the opportunity to introduce proofs and abstract
problem-solving into the course from the beginning. We believe that all students
of mathematics at this level must begin to practice applying what they have learned
in new situations, and not merely master routine calculations. In addition, they
must begin to learn how to construct correct and convincing proofs of their asser-
tions—that is the way they will be working and communicating with their colleagues
as long as they stay in the mathematical sciences. Since the subject matter of linear
algebra is relatively uncomplicated, this is the ideal place to start.

We have included some important mathematical applications of the topics
that we cover, such as the application of the spectral theorem for symmetric real
matrices to the geometry of conic sections and quadric surfaces, and the application
of diagonalization and Jordan canonical form to the theory of systems of ordinary
differential equations. We have not included many applications of linear algebra
to problems in other disciplines, however, both because of the difficulty of pre-
senting convincing, realistic applied problems at this level, and because of the needs
of our audience. We prefer to give students a deep understanding of the mathematics
that will be useful and to leave the discussion of the applications themselves to
other courses.

A WORD ON PREREQUISITES

Since students taking the sophomore linear algebra course have typically had at
least one year of one-variable calculus, we have felt free to use various facts from
calculus (mainly properties of and formulas for derivatives and integrals) in many
of the examples and exercises in the first six chapters. These examples may be
omitted if necessary. The seventh chapter, which covers some topics in differential
equations, uses substantially more calculus, through derivatives of vector-valued
functions of one variable and partial derivatives.

In the text and in proofs, we have also freely used some ideas such as the
technique of proof by mathematical induction, the division algorithm for polyno-
mials in one variable and its consequences about roots and factorizations of poly-
nomials, and various notions about sets and functions. Ideally, these topics should
be familiar to students from high school mathematics; they are also reviewed briefly
in the text or in the appendices for easy reference.

SOME COMMENTS ON THE EXERCISES

In keeping with our goals for the course, we have tried to structure the book so
that, as they progress through the course, students will start to become active
participants in the theoretical development of linear algebra, rather than remaining
passive bystanders. Thus, in the exercises for each section, in addition to com-
putational problems illustrating the main points of the section, we have included
proofs of parts of propositions stated in the text and other problems dealing with
related topics and extensions of the results of the text. We have sometimes used
the exercises to introduce new ideas that will be used later, when those ideas are
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straightforward enough to make it possible to ask reasonable questions with only
a minimum of background. In addition to the exercises at the end of each section,
there are supplementary exercises at the end of each chapter. These provide a review
of the foregoing material and extend concepts developed in the chapter. Included
in the supplementary exercises are true-false questions designed to test the student’s
mastery of definitions and statements of theorems.

Following the appendices, we provide solutions to selected exercises. In
particular, we give solutions to alternative parts of exercises requiring numerical
solutions, solutions to exercises that are proofs of propositions in the text, and
solutions to exercises that are used subsequently in the text.

Finally, as the course progresses, we have included numerous extended se-
quences of exercises that develop other important topics in, or applications of, linear
algebra. We strongly recommend that instructors using this book assign some of
these exercises from time to time. Though some of them are rather difficult, we
have tried to structure the questions to lead students to the right approach to the
solution. In addition, many hints are provided. These exercise sequences can also
serve as the basis for individual or group papers or in-class presentations, if the
instructor desires. We have found assignments of this type to be very worthwhile
and enjoyable, even for students at the sophomore level. A list of these exercises
appears after the acknowledgments.
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COURSES OF STUDY

To allow for flexibility in constructing courses using this book, we have included
more material than can be covered in a typical one-semester course. In fact, the
book as a whole contains almost exactly enough material for a full-year course in
linear algebra. The basic material that should be covered in any one-semester course
is contained in the first three chapters and the first two sections of the fourth chapter.
We have structured the book so that several different types of coherent one-semester
courses may be constructed by choosing some additional topics and omitting others.

Option |

A one-semester course culminating in the geometry of the inner product space R”
and the spectral theorem for symmetric mappings would consist of the core material
plus the remaining sections of Chapter 4. We have covered all of this material in
a 13-week semester at Holy Cross.

Option Il

A one-semester course culminating in an introduction to differential equations would
consist of the core material plus Sections 1. 2, 4, and 5 of Chapter 7. (The third
section of Chapter 7 presupposes the Jordan canonical form, and the description of
the form of the solutions to higher-order, constant-coefficient equations in Section
4 is deduced by reducing to a system of first-order equations and applying the
results of Section 3. Nevertheless, the main result of Section 4, Theorem 7.4.5,
could be justified in other ways, if desired. The Jordan form could also be introduced
without proof in order to deduce these results, since the final method presented for
explicitly solving the equations makes no use of matrices.)

Option 111

A one-semester course incorporating complex arithmetic and the study of vector
spaces over C and other fields would consist of the core material plus Sections 1
and 2 of Chapter 5. (If time permits, additional sections from Chapter 4 or Chapter
6 could also be included.)



A Guide to the
Exercises

Below is a listing by topic of the exercises that either introduce a new topic used
later in the text or develop important extensions of the material covered in the text.
The topics are listed in order of their first occurrence.

Topic Section (Exercise)
Even and odd functions 1.2 (2)
Vector spaces of matrices 1.2 (11-16)
1.3 (11-12)
2.2 (10-15)
Direct sums of subspaces 1.3 (8-9)
Alternate version of elimination 1.5 (7-8)
Lagrange interpolation 1.6 (16)
Vector space of linear maps 2.1 (12)
2.2 (10-15)
Restriction of a linear transformation 2.1 (14-15)
2.6 (9)
Reflections 2.2 4)
2.7 (14)
4.4 (14)
Transposes, symmetric, and skew- 2.2 (12-13)
symmetric matrices 2.3(9)
Elimination in matrix form 2.3 (10-11)
Traces of matrix 2.3 (12)
Transpose as a linear transformation 2.3 (13)
Direct sum of linear transformations 2.4 (11
6.1 (6)

vii
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Topic

Upper and lower triangular matrices

Elementary matrices

Cross product
Vandermonde determinants
Involutions

Companion matrices
Simultaneous diagonalizability
Polarization identity
Inner product on a real vector space
Bilinear mappings
Normal vector to a hyperplane
Bessel’s inequality
Dual space
Normal matrices
Symmetric map with respect to a general
inner product
Orthogonal matrices and transformations
(orthogonal group)
Definite matrices
Special linear matrices
(special linear group)
Hessian matrix
Quadratic forms
(Sylvester’s theorem)
Rational numbers and related fields
Finite fields
C" as a real vector space

Vector space over a finite field
R as a vector space over Q
Skew-Hermitian matrices
Unitary matrices

Normal matrices

Hermitian inner products on C”
General projection mappings
Unipotent transformations

Segre characteristics

Section (Exercise)

2.5 (9,10)
2.6 (15)
4.1 (11)
2.5 (14-18)
2.6 (12-14)
3.3 (12)
3.2 (13-16)
3, Supplementary Exercises (9)
4.1 (15-16)
4.2 (8)
4.1 (18)
4.2 (14)
4.3 (6)
4.3 (10-13)
4.3 (14-17)
4.4 (9-11)
4.4 (18)
4.4 (19)
4.5 (7
4.5 (8)

4.6 (4,8)

4.6 (11-13)

4, Supplementary Exercises (8)

4, Supplementary Exercises (12)
4, Supplementary Exercises (18-20)

5.1(8)

5.1 (10-15)
5.1 (6)

5.3 (6-10)
5.2(11,13,14)
5.2 (15)
5.3(7)
5.3(8,9)
5.3 (10-12)
5.3 (13-14)
6.1 (12)
6.2 (8)

6.3 (6)

6.3 (11)
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Invariant subspace of set of mappings
Irreducible set of mappings

Markov chains

Finite difference equations

Inhomogeneous first order ordinary dif-
ferential equations

Alternate method of solving linear differ-
ential equations

Ordinary differential equations as opera-
tors

Non-constant coefficient ordinary differ-
ential equations

Heat equation

Legendre polynomials

A GUIDE TO THE EXERCISES

Section (Exercise)

6.4 (7)

6.4 (8-9)
6.4 (12)
7.2 (8-12)
7.3 (15-18)
7.4 (14-15)
7.4 (8)

7.4 (9,10)
7.4 (11)
7.4 (12)

7.5 (12)

7, Supplementary Exercises (7-12)
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CHAPTER ]

Vector Spaces

Introduction

In this first chapter of A Course in Linear Algebra, we begin by introducing the
fundamental concept of a vector space, a mathematical structure that has proved
to be very useful in describing some of the common features of important mathe-
matical objects such as the set of vectors in the plane and the set of all functions
from the real line to itself.

Our first goal will be to write down a list of properties that hold for the
algebraic sum and scalar multiplication operations in the two aforementioned ex-
amples. We will then take this list of properties as our definition of what a general
vector space should be. This is a typical example of the idea of defining an object
by specifying what properties it should have, a commonly used notion in mathe-
matics.

We will then develop a repertoire of examples of vector spaces, drawing on
ideas from geometry and calculus. Following this, we will explore the inner structure
of vector spaces by studying subspaces and spanning sets and bases (special subsets
from which the whole vector space can be built up). Along the way, we will find
that most of the calculations that we need to perform involve solving simultaneous
systems of linear equations, so we will also discuss a general method for doing
this.
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The concept of a vector space provides a way to organize, explain, and build
on many topics you have seen before in geometry, algebra, and calculus. At the
same time, as you begin to study linear algebra, you may find that the way everything
is presented seems very general and abstract. Of course, to the extent that this is
true, it is a reflection of the fact that mathematicians have seen a very basic general
pattern that holds in many different situations. They have exploited this information
by inventing the ideas discussed in this chapter in order to understand all these
situations and treat them all without resorting to dealing with each case separately.
With time and practice, working in general vector spaces should become natural
to you, just as the equally abstract concept of number (as opposed to specific
collections of some number of objects) has become second nature.

§1.1. VECTOR SPACES

The basic geometric objects that are studied in linear algebra are called vector
spaces. Since you have probably seen vectors before in your mathematical expe-
rience, we begin by recalling some basic facts about vectors in the plane to help
motivate the discussion of general vector spaces that follows.

In the geometry of the Euclidean plane, a vector is usually defined as a directed
line segment or “arrow,” that is, as a line segment with one endpoint distinguished
as the “head” or final point, and the other distinguished as the “tail” or initial point.
See Figure 1.1. Vectors are useful for describing quantities with both a magnitude
and a direction. Geometrically, the length of the directed line segment may be taken
to represent the magnitude of the quantity; the direction is given by the direction
that the arrow is pointing. Important examples of quantities of this kind are the
instantaneous velocity and the instantaneous acceleration at each time of an object
moving along a path in the plane, the momentum of the moving object, forces, and
so on. In physics these quantities are treated mathematically by using vectors as
just described.

In linear algebra one of our major concerns will be the algebraic properties
of vectors. By this we mean, for example, the operations by which vectors may
be combined to produce new vectors and the properties of those operations. For
instance, if we consider the set of all vectors in the plane with a tail at some fixed
point O, then it is possible to combine vectors to produce new vectors in two ways.

Head

Tail

Figure 1.1
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Figure 1.2

First. if we take two vectors x and y, then we can define their vector sum
X + y to be the vector whose tail is at the point O and whose head is at the fourth
corner of the parallelogram with sides x and y. See Figure 1.2. One physical
interpretation of this sum operation is as follows. If two forces, represented by
vectors x and y, act on an object located at the point O then the resulting force
will be given by the vector sum x + y.

Second, if we take a vector x and a positive real number c¢ (called a scalar
in this context), then we can define the product of the vector x and the scalar ¢ to
be the vector in the same direction as x but with a magnitude or length that is equal
to ¢ times the magnitude of x. If ¢ > 1, this has the effect of magnifying x, whereas
if ¢ < 1, this shrinks x. The case ¢ > 1 is pictured in Figure 1.3. Physically, a
positive scalar multiple of a vector may be thought of in the following way. For
example, in the case ¢ = 2. if the vector x represents a force, then the vector 2x
represents a force that is “twice as strong” and that acts in the same direction.
Similarly, the vector (1/2)x represents a force that is “one-half as strong.” The
product ¢x may also be defined if ¢ < 0. In this case the vector ¢x will point along
the same line through the origin as x but in the opposite direction from x. The
magnitude of ¢x in this case will be equal to |c| times the magnitude of x. See
Figure 1.4.

Further properties of these two operations on vectors may be derived directly
from these geometric definitions. However, to bring their algebraic nature into
clearer focus, we will now consider an alternate way to understand these operations.
If we introduce the familiar Cartesian coordinate system in the plane and place the
origin at the point O = (0, 0), then a vector whose tail is at O is uniquely specified

CcX

c>1

Figure 1.3
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X

Figure 1.4

by the coordinates of its head. That is, vectors may be described as ordered pairs
of real numbers. See Figure 1.5.

In this way we obtain a one-to-one correspondence between the set of vectors
with a tail at the origin and the set R? (the set of ordered pairs of real numbers)
and we write X = (x;, x») to indicate the vector whose head is at the point
(x), x2).

Our two operations on vectors may be described using coordinates. First,
from the parallelogram law for the vector sum, we see that if x = (x;, x;) and
y = (v, y2),thenx +y = (x; + y;, xo + y»). See Figure 1.6. That is, to find
the vector sum, we simply add “component-wise.” For example the vector sum
(2,5) + (4, —3) is equal to (6, 2). Second, if c is a scalar and x = (x;, x;) is a
vector, then ¢x = (cx,, ¢x,). The scalar multiple 4(—1, 2) is equal to (—4, 8).

With this description, the familiar properties of addition and multiplication
of real numbers may be used to show that our two operations on vectors have the
following algebraic properties:

1. The vector sum is associative: For all X, y, and z € R? we have
x+y)tz=x+(y + z)

2. The vector sum is commutative: For all x and y € R? we have
X+y=y+x

3. There is an additive identity element 0 = (0, 0) € R? with the property
that forallx € R, x + 0 = x.

A

A
v

Figure 1.5



