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INTRODUCTION

Nonlinear optics has been an active research field since the classic work of Peter Franken
soon after the first demonstrations of the laser. Recently, however, the field has become
much more active, and the breadth of both research and applications has greatly enlarged.
Important functions under investigation include switching, frequency conversion, and
phase conjugation, for applications including communications, computing, image
amplification and processing, and laser beam phase correction and control.

Fundamental to research in and applications of nonlinear optics are nonlinear optical
materials. The availability of suitable materials will often determine whether an
application is a pipe dream, a laboratory trick, or something practical and useful. The
demands placed on a nonlinear optical material depend on the particular application, but,
in general, they are very stringent. Requirements include large nonlinearity, often with low
absorption and high speed (usually a contradictory set), good optical and mechanical
properties, and no unwanted changes (damage) in response to the optical radiation to
which the material is subject.

The purpose of this conference was to review the status of research on several of the most
promising classes of nonlinear optical materials: photorefractives, semiconductors, and
fibers, both crystalline and glass. Another major class of nonlinear optical materials—the
organics—was the subject of another conference (Conference 1147) at this SPIE
symposium.

The session on photorefractive materials featured a presentation on progress in growth
and applications of new tungsten bronze materials, and included presentations on aspects
of hologram storage and nonlinear phase conjugation.

The semiconductor session included presentations on large nonlinearities by resonant and
by charge-transport enhancement, several presentations on photorefractive effects in
semiconductors, and several presentations on the study and use of exciton nonlinearities
in quantum-well structures.

The nonlinear optical fibers session featured presentations on second-harmonic gen-
eration in glass fibers—a poorly understood but potentially very important process. There
were several theories to explain the overall phenomenon, as well as a theory to show how
the process begins. The session also featured a presentation on nonlinear frequency
conversion in lithium niobate fibers and films, whose ferroelectric domains have been
periodically poled in order to provide quasi-phasematching.

We particularly wish to thank the cochairs who actually organized the sessions, Ian
McMichael, Duncan Steel, and Jim Rotgé. The success of the conference is their doing.
Howard R. Schlossberg

Air Force Office of Scientific Research

Raymond V. Wick
Air Force Weapons Laboratory
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Invited Paper

Photorefractive tungsten bronze materials and applications
R.R. Neurgaonkar, W.K. Cory and J.R. Oliver

Rockwell International Science Center
Thousand Oaks, CA 91360

and
E.J. Sharp, M.J. Miller, G.L. Wood, W.W. Clark III, A.G. Mott, G.J. Salamo and B.D. Monson

Center for Night Vision and Electro-Optics
Fort Belvoir, VA 22060-5677

ABSTRACT

We review the current status of the photorefractive tungsten bronze ferroelectric
crystals in terms of their electro-optic character and applications, with special emphasis
on the current results for doped SBN:60 crystals. New results pertaining to phase conjuga-
tion and double phase conjugation (Bridge Conjugator) and the effects of internal fields on
beam fanning are discussed.

1. INTRODUCTION

The need for optical materials with high coupling coefficients and fast response times
for photorefractive applications such as phase conjugation, optical computing, image proc-
essing and laser hardening has stimulated work on doped tungsten bronze (T.B.) ferroelectric
crystals. Several T.B. solid solutions such as Sry_ szo (SBN), Ba,_,SryK Nb5015
(BSKNN) and Sr,_,Ca,NaNbgO,g (SCNN) have been founé to ge sultable for photore%rgctive ap-
plications because their optical figure-of-merit (n ry ./ €) is ngparable to, or better than,
other leading material such as BaTiO3, KNbOj, LiNbOj, and BSO. Since bronze crystals
offer a wide range of electro-optic constants and the structural flexibility to accommodate
dopants in more than one crystallographic site, these crystals are being actively investiga-
ted for photorefractive applications in our work. This paper reports the growth and classi-
fication of T.B. materials for these applications.

2. IMPORTANCE OF TUNGSTEN BRONZE CRYSTALS

Photorefractive effects have been observed in a variety of electro-optic metgrials such
as BaTiO3, KTN, LiNbO3, LiTaO3, cds, BSO, BGO, BTO, BaZNaNb5015' BSKNN and SBN. Depen-
ding on the band gap in a given material, refractive index changes may be induced not only
by visible light, but also by ultraviolet and IR radiation. Among these key photorefractive
materials, oxide ferroelectric crystals are being extensively studied because they exhibit
large electro-optic coefficients and large photorefractive coupling. Currently, we are
exploring various tungsten bronze host crystals for photorefractive applications because of
the following important features:

1. Longitudinal (rg;) and transverse (r3j3) electro-optic effects can be made large accord-
ing to device requirements.

2. High coupling and fast response can be attained in the desired spectral range by the use
of the 15-, 12-, 9- and 6-fold coordinated lattice sites for a given dopant.

3. On cooling, the longitudinal electro-optic response increases in BSKNN and SCNN, thereby
enhancing the potential of these crystals for device applications.

4, Photorefractive speed can be dramatically increased by the application of an external
field.

5. Gratings can be written in two different directions simultaneously using different !
in BSKNN and SCNN crystals.

3. CLASSIFICATION AND GROWTH OF BRONZE CRYSTALS

The tungsten bronze compositions can be represented by the general formulas

A%)i A2)2C4Bloo3g and (Al (A B10039 in which Ayy By, C and B are l?—, 12-, 9- anq two

old coordinated sites 1in the crystal structure. The ferroelectric phases can be divided
into two groups: those with tetragonal symmetry (4 mm), which are ferroelectric, and those
with orthorhombic symmetry (mm2), which are both ferroelectic and ferroelastic. 1In the
orthorhombic structure, the polar axis can be either along the c-axis, such as in
Sr,_,Ca NaNb5 5 (SCNN) or BazNaNbSOl , or along the a- or b-axis, such as in PbNb , and
szKNb?OlS. %ese tetragonal and orthorhombic groups are further subgrouped accor 1ng to
crystal symmetry and the longitudinal and transverse ferroelectric and optical properties,

2/ SPIE Vol. 1148 Nonlinear Optical Properties of Materials (1989)
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Figure 1. Classification of tungsten bronze crystals based on their ferroelectric
and electro-optic character.

as summarized in Figure 1. These properties are distinguishable only in single crystals of
each type,_as it is very difficult to recognize these differences in polycrystalline ceramic
materials.

The photorefractive studies described in this paper were carried out in three different
tungsten bronze hosts, namely Sr)_yBayNb;Og (SBN), Bajp_,SryK;_ Na, NbgOj5 (BSKNN) and
Sry_yCayNaNbgOyg5 (SCNN), which exemplify the dlfferent types e¥ Xro -optic response avail-
able in this crystal family (Figure 2). These crystals werg %rown by the Czochralski tech-
nique using an rf induction furnace and platinum crucibles. Among these crystals,

Sry_ gBag 4NbyOg (SBN:60) was gaSLer to grow since this composition is believed to exist near
the congruent melting region. Currently, we have been able to grow SBN single crystals
over 2.5 cm in diameter while other crystals based on BSKNN and SCNN age being grown over

1 cm diameter. The growth procedures are discussed in earlier papers.>”

scsot80

s ¢ -

SBN BSKNN SCNN

Figure 2. Photorefractive tungsten bronze single crystals.

SBN crystals are tetragonal at room temperature for all Ba:Sr ratios with the polar
axis oriented along <001>. SBN crystals exhibit strong transverse ferroelectric and optical
effects such as the polar axis dielectric constant €11, the linear electro-optic coefficient
r33, the piezoelectric constant d33, and electromechanical coupling K33. BSKNN crystals
show strong longitudinal effects such as €117 Y5y dlS' K15, even though the polar axis re-
mains along <001>. The BSKNN-1l and BSKNN-2 compositions have ferroelectric, optical and

SPIE Vol. 1148 Nonlinear Optical Properties of Materials (1989) / 3



photorefractive characteristics similar to BaTiO3. The smaller until cell BSKNN—3 and
BSKNN-5 compositions are pseudo-tetragonal at room temperature and they exhibit moderately
large rg; and r3zz. In orthorhombic SCNN crystals( bo?h rg) and r3j3 areola?ge and nea;ly
equal. Furthermore, SCNN has a spontaneous polarization, Pg3, a;mos; 25ﬁlhlgher tban in SBN;
hence, the optical figure-of-merit for SCNN, n riy/e, for SCNN 1s 51gn1f1cant}y hlghey Fhan
that for SBN or BaTiO3. Because of the availability of two large glectrq—optlc coeff191—
ents, it may be possible to write gratings in two different directions S}multaneously41n
BSKNN and SCNN crystals. This is a rare advantage which could be significant for optical
computing and 3-D storage.

The photorefractive properties of doped SBN:60 are presented in Table 1. An important
feature of SBN crystals is that the photorefractive properties, such as speed and coupling,
depend on the t¥ge of dopant and its s;te preference in tungsten bronze crystal structure.
For example, C? in the 12-fold coordinated site has response 1in ngIble with coupling as
high as 45 cm~+ (plate) and response times of 10 - 40 ms at 2 W/cm4. On the other hand,

Cr +—doped SBN: 60 crystals have a spectral responge which extends out to 1.0 um and response
times almost an order of magnitude faster than Ce *-doped crystals, However, the coupling
coefficient for Cr3t-doped crystals is considerably lower at 6 cm ~. As shown in Figure 3,
we have established the trends of dopants with respect to their site occupancies in the T.B.
structure and using these criteria, it should be possible to further control the speed and
coupling in the desired spectral range.

Table 1 Preliminary Photorefractive Results for Different Dopants

cr3*.DOPED Fe3 *_DOPED
Ce3*-DOPED SBN:60 SBN:60 SBN:60
PROPERTY 12-FOLD 9-FOLD 6-FOLD 6-FOLD
CRYSTAL COLOR PINK GREENISH-YELLOW | GREENISH-YELLOW YELLOW
QUALITY EXCELLENT EXCELLENT EXCELLENT REASONABLE*
ELECTRO-OPTIC 460 460 550 480
COEFFICIENT
x10~ 12 mv
BEAM FANNING
RESPONSE

AT 40 mW/cm?2 2.5s 3.0s 0.7s 2.8s

AT 0.2 W/cm? 0.6s 1.2s - -

AT 2 W/cm? 0.05s 0.09s 0.008s 0.07s
COUPLING ~19 cm~ 1 (CUBE) ~5-6 cm ! ~6-7 cm ! -
COEFFICIENT ~a5—1 (PLATE)

SPECTRAL 0.4-0.7 mm 0.4-0.9 mm 0.6-1.0 mm 0.4-0.9 mm
RESPONSE
SPPCR EXCELLENT EXCELLENT EXPECTED EXPECTED

*STRIATED AT HIGHER DOPING LEVELS

Two new effects have been discovered using a Ce3+—doped SBN: 60 crystal.9 First, high
intensity multicolored isotropic conical diffraction rings are formed when the crystal is
inserted into a multiline argon-ion laser beam. The origin of this effect is Bragg
scattering from self-induced photorefractive gratings. When the multicolored rings were
reflected into the crystal, phase conjugates of a}% eight laser lines were produced in a
time very near to the bffm fanning response time. Second, self-pumped phase conjugation
via internal reflection has been demonstrated at several different simultaneous wave-
lengths by spatially separating the argon-ion laser lines with dispersing elements. Fig-
ure 4 shows the_experimental set-up used to observe multicolored self-pumped phase conjuga-
tion in SBN:60.°

A new method for double phase conjugation has been discovered which is particularly
suited to tungsten bronze SBN. The same method was also used to produce conjugate waves
in BaTiO3 and BSKNN crystals. This new arrangement is highly insensitive to the alignment
of the two incident beams. This is due in part to the fact that in this geometry none of
the beams are required to undergo reflections within the crystal. This new double-phase
conjugate mirror quickly forms a conjugate image with high reflectivity and fidelity and is
free from instabilities due to frequency shifts or competition from self-pumping. Figure 5
shows a sketch of this double phase conjugator which is called a "bridge conjugator" because
the two input beams are observed to bridge together via beam fanning and overlap within the

4/ SPIE Vol. 1148 Nonlinear Optical Properties of Materials (1989)



S$C44286

TYPES OF DOPANTS SITE PREFERENCE SPECTRAL RESPONSE

15-FOLD COORDINATED SITE
Ce3+: PINK IN COLOR @

12-FOLD COORDINATED SITE ©) 0.2 70 0.60 um
Y L . u

Y
Ce3+/Ce%+: PINK IN COLOR \

* PHOTOIONIZABLE M 0.48 TO 0.70 um
9-FOLD COORDINATED SITE .

* DONOR/ACCEPTOR Ce3+/4+: YELLOWISH-GREEN @ \

e SITE PREFERENCE \\

e SIZE AND QUALITY ) 0.5 TO 1.0 um

6-FOLD COORDINATED SITE 2

Fe2+/Fe3+, Cr3+, Mn2+/Mn3+
(1) Ar-Ne LASER YELLOW TO GREENISH-YELLOW (Fe, Cr)
(2) DYE-LASER YELLOWISH-BROWN (Mn)

(3) NO RESPONSE

Figure 3. Role of dopants for photorefractive applications.

—< &
—f T
% !
G 5 |
SBN
c
H PRISM
Ar+ |_|
5 BS
Figure 5. Sketch of a double phase conju-
Figure 4. Diagram of the experimental appa- gator in the "bridge conjugator" geometry.
ratus for simultaneous self-pumping at several E; and E, are the incident optical elec-
colors. The crystal c-axis points into the tromagnetic fields, while E;* and E,* are
page so that light bends toward the top of the corresponding conjugate fields. Both
the crystal with each color forming an inde- beams are required for either conjugate
pendent loop at the upper right hand edge of to exist and the energy for the conjugate
the crystal (see insert of SBN crystal). of one beam is supplied by the other beam.

crystal without reflecting off a crystal face. Applications for the bridge conjugator are
image addition and substraction, communications and reconfigurable interconnects.

Significant increases (x10) in both speed and gain of the photorefrTgtive beam fanning
process have been obtained via three different methods in SBN and BSKNN. These methods
involve the creation of a DC electric field either (1) externally, (2) by the pyroelectric
effect, or (3) by thermally cycling the crystals in the presence of laser radiation. En-
hanced effects have been observed for both ordinary and extraordinary polarized light. Fig-
ure 6 provides a comparison of the on-axis beam depletion for normal beam fanning and the
enhanced effects. All three methods gave similar results and are shown here for ordinary
polarized light for an SBN crystal. Optical limiters, associative holographic memories, and
the real-time image processing are obvious applications.

Self-pumped phase conjugation via internal reflection in a photorefristive medium pro-

duced by a series of intense nanosecond pulses was recently demonstrated. This is the
first report of short-pulse induced self-pumped phase conjugation in a photorefractive

SPIE Vol. 1148 Nonlinear Optical Properties of Materials (1989)/ 5
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fanning which is enhanced by DC electric fields generated
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medium4 Fifteen nanose%ond pulses at 532 nm from a YAG laser ranging in intensity from

9 x 10% to 9 x 10° W/cm“ have been used. Three experiments have been conducted using a
crystal of Rh3+—doped SBN:60. The conjugate signal began with the first pulse and the time
to Eeach 63% of its equilibrium value scaled as the inverse of the square of the intensity
(17°) The measured equilibrium conjugate reflectivity was 29%.

In conclusion, tungsten bronze SBN and BSKNN crystals appear to be very promising for
future photorefractive applications in phase conjugation, optical computing and image proc-
essing. Host crystal-dopant interactions will continue to be an important area of research
in the bronze ferroelectrics in order to maximize the relevant photorefractive properties for
these applications.
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Abstract

Cr-doped strontium barium niobate has shown significant reduction in the time of response compared to pre-
viously grown Ce-doped crystals, with room temperature response times as short as 0.2 sec. The experimental
photorefractive two-beam coupling gain and response time of 1% and 1.6% Cr-doped SBN:60 and 1% Cr-doped
SBN:75 will be presented and compared to results in Ce-doped SBN:60. The photorefractive effect in Cr-doped
SBN:60 has also shown a strong temperature dependence, with gain increasing by a factor of two when the crystal
was cooled from 40 to -20° C. Significant gain enhancement was also predicted and obtained by applying a DC
electric field of up to 10 kV/cm.

1. Introduction

Ce-doped Srg ¢Bag 4NbyOg (SBN:60) and Srg 75Bag.25Nb,Og (SBN:75) have been shown to be effective media
for optical processing and phase conjugation applications becuase of their large coupling constants, high optical
quality, and relatively short response time.! In addition, the properties of SBN can be readily changed by varying
its composition, large (~ 2 cm cube) crystals have been grown, it is more resistant to temperature changes, applied
electric fields, and physical handling, and its open structure enables the addition of a variety of dopants.? The large
photorefractive gain coefficients of materials like SBN and BaTiOg are desirable for high-efficiency devices and large
optical amplification. However, another major goal is to reduce the response time of the materials for signal processing
applications where speed is desired. In this paper, we present the results of Cr-doping in SBN:60 and SBN:75, which
showed an almost order of magnitude decrease in the response time over Ce-doping, with a corresponding loss in
gain by about a factor of 2.

2. Material Properties
SBN is a tungsten bronze ferroelectric material with a general formula of Sr.Ba;_,Nby;Og, with both z = 0.6

and z = 0.75 crystals having been successfully grown. The cation ratio z in large part determines its ferroelectric
and electro-optic material properties. Table I shows some of these main properties of SBN:60 and SBN:75.2:3

Table I: Properties of SBN:60 and SBN:75

Material Tc E-O Coeff nlrij/e; U YR
°C (pm/V) (pm/V) (cm?/Vsec) (cm3 /sec)
SBN:60 75 235 5.8 0.5 5 x 1078
SBN:75 56 1340 5.0 0.5 5 x 1078
BaTiO3 128 1640 4.9 0.5 5 x 1078

Two Cr-doped SBN:60 samples, one with 1% and the other with 1.6% Cr in the flux, and one 1% Cr-doped
SBN:75 sample were studied. All were grown using the Czochralski method and were poled into a single domain by
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cooling through their cubic to ferroelectric phase transition temperatures with an applied electric field of 8 kV/cm
along their c-axes.

Fig. 1 shows the absorption spectrum of the three Cr-doped SBN samples as well as that of Ce-doped SBN‘:G.O for
comparison. Ce-doped SBN:60 has a broad-band absorption level around 480 nm.l. Qr-dpped SBN has an additional
absorption band centered around 650 nm, which may indicate a photoactive transition in the near infra-red.

6
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—~ 41 (o) 2
N Shutter />Dz
£ 31
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"o ®
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14 \7 D
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Fig. 1: Absorption spectrum for (a) Ce-doped SBN:60, Fig. 2: Configuration of the two-beam coupling exper-
(b) Cr-doped SBN:60, and (c) Cr-doped SBN:75. iment used to characterize the SBN:60 crystals. The

beam polarization was in the same plane as the c-axis.
I, (0) + I;(0) was approximately 0.25 W/cm?2.

8. Photorefractive Properties

The photorefractive properties of the SBN:60:Cr crystals were studied using two-beam coupling. Fig. 2 shows
the experimental configuration used. Both beams were polarized in the direction of the c-axis, i.e. horizontally. The
514.5 nm line of an argon-ion laser with beam diameter of 0.3 cm was used. When the two beams intersect inside
{;he crystal, energy is transferred from one beam to the other in the direction of the c-axis, which can be described

Y
I1(z) =11 (0)exp[—(T' + )]
I(z) =I2(0)exp|(T — a)z]

where a is the absorption coefficient and T is the two-beam coupling constant, which is given by*~¢

Ey +1E,
e i1 explr). @

(1)

I'x E,, =1EyN

The response time of the material is given by

Eo +1i(Eq+ E,)
=t 3
T OEO +1:(E4+EN) ( )
where
o = hUNA (4)
©~ sIo(Np — N,)

is the fundamental limit of the speed of the photorefractive effect.” In the Eqns. (2) and (3), Eo is the externally
applied electric field, and the characteristic fields are given by

_CNA NA eNA
Ey = K (1 ND)N K for Ny << Np
kgTK
Ed:% (5)
N4
“ l‘K )
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where K = 21 /), is the wavenumber corresponding to the grating period, v is the electron recombination rate, u is
the electron mobility, N4 is the trap density, Np is the donor density, and s is the photoionization cross section.

Figs. 3 and 4 show the experimentally measured two-beam coupling constant and response time, respectively, of
the Cr-doped SBN:60 and SBN:75 crystals along with Ce-doped SBN:60 for comparison as a function of the grating
wavelength. By differentiating Eqn. (2), the trap density can be obtained as a function of the optimum grating
wavelength for maximum I'. The 1% Cr-doped crystal showed the fastest response time, around 0.2 sec, but had
the smallest coupling constant, around 3 cm™!. SBN:75 showed high gain even for a smaller E,. due to its larger
electro-optic coefficient.
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Fig. 3: Steady-state two-beam coupling constant T’
as a function of the grating period A, for SBN:60:Cr,
doped with 1% Cr; SBN:60:Cr, doped with 1.6% Cr;
SBN:75:Cr, doped with approximately 1% Cr; and
SBN:60:Ce, doped with approximately 1% Ce.

Fig. 4: Response times of the SBN:60:Cr, SBN:75:Cr,
and SBN:60:Ce crystals as a function of grating period,
for A = 514.5 nm and I, = 0.25 W/cm?.

The preceding experiments were all performed using the 514.5 nm line of the argon-ion laser. These materials
were found to be photorefractive at longer wavelengths as well. Figs. 5 and 6 show the effect of using the lower
photon energy of the He-Ne laser for two-beam coupling measurements in a 1.6% Cr-doped SBN:60 at A\, = 2.46
pm. Because of the lower absorption and fewer ionizable donors at the longer wavelength, the gain and response
time results were predictably lower compared to identical measurements using the shorter wavelength sources. The
absorption spectrum of Cr-doped SBN shows a broad-band absorption region in the red to near infra-red, and future
investigation will determine whether these bands contribute to the photorefractive effect and whether or not these
crystals are sensitive at the near infra-red wavelengths used by semiconductor lasers.
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Fig. 5: Two-beam coupling constant of 1.6% Cr-doped
SBN:60 at A = 514.5 nm and 632.8 nm for -20° C <
T < 40° C.

Fig. 6: Response time of 1.6% Cr-doped SBN:60 at
A = 514.5 nm and 632.8 nm for -20° C < T' < 40° C.

SPIE Vol. 1148 Nonlinear Optical Properties of Materials (1989)/ 9



4. Enhancement of Gain

Various methods are available for increasing the photorefractive gain of SBN. These include optimization of the
grating period, lowering the temperature, and increasing the doping. Cooling Cr-doped SBN:60 has been found to
increase gain, but results in a considerable increase of the response time, as shown in Figs. 5 and 6. This increase
in T for lower temperatures can be attributed to decreased leakage of separated charges across the grating due to
thermal excitation of trapped carriers.® Increasing the doping is not too fruitful since E,. tends to the smaller of E;
or Ey (see Eqn. (2)). In addition, there exists the practical problem of obtaining high optical quality crystals with
large dopant concentrations.

Experimental results have shown that the application of an external DC field on Cr-doped SBN:60 results in a
marked improvement in the photorefractive two-beam coupling constant. An external field tends to drive the excited
electrons into their traps half a grating period away, resulting in a larger space charge field. In Eqn. (2), for Eq =
0, the limiting field E,. is the smaller of E; and E. For large Ey, the space charge field approaches Ex, which can
be increased by increasing the trap density N4.

Fig. 7 shows the experimental results of applying a DC field of up to 10 kV/cm to the 1% and 1.6% Cr-doped
SBN:60 samples, where increases by more than a factor of two were realized. Since the two-beam coupling intensity
gain is exponential, any increase in I' results in a significant improvement in beam amplification and energy coupling
in devices utilizing this effect. It would be possible to use thinner crystals of SBN in experiments and applications,
or realize larger signal gain.
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Fig. 7: Measured two-beam coupling constant of 1%
and 1.6% Cr-doped SBN:60 with an applied electric
field of 0 < Ey < 10 kV /cm.

5. Conclusions
Cr-doped SBN:60 has shown significant advantages in having a faster response over Ce-doped SBN. With the
reduced response time, Cr-doped crystals had significantly lower photorefractive gain coefficients that previously
grown Ce-doped ones. However, enhancement of the gain was possible through the application of an external DC
electric field, resulting in increases in gain I' by over a factor of two.
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