Nutrition for Health, Fitness, & Sport

CZ CZ

Melvin H. Williams

NUTRITION

FOR HEALTH, FITNESS, & SPORT

Melvin H. Williams

Old Dominion University

Boston Burr Ridge, IL Dubuque, IA New York San Francisco St. Louis
Bangkok Bogotá Caracas Kuala Lumpur Lisbon London Madrid Mexico City
Milan Montrea! New Delhi Santiago Seoul Singapore Sydney Taipei Toronto

NUTRITION FOR HEALTH, FITNESS, & SPORT, EIGHTH EDITION

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas, New York, NY 10020. Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written consent of The McGraw-Hill Companies, Inc., including, but not limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the United States.

This book is printed on recycled, acid-free paper containing 10% postconsumer waste.

Printed in China

234567890SDB/SDB0987

ISBN-13 978-0-07-294371-9 ISBN-10 0-07-294371-8

Publisher: Michelle Watnick Publisher: Colin H. Wheatley

Senior Developmental Editor: Lynne M. Meyers

Marketing Manager: Tami Petsche Project Manager: April R. Southwood

Senior Production Supervisor: Kara Kudronowicz

Senior Media Producer: Jeffry Schmitt

Designer: Rick D. Noel

Cover Designer: John Rokusek

Lead Photo Research Coordinator: Carrie K. Burger

Compositor: Carlisle Publishing Services

Typeface: 10/12 Times Roman

Printer: R. R. Shenzhen Donnelley Printing Co., Ltd.

(USE) Cover Images: Fruit: © Jonelle Weaver/Getty Images; Swimmer: © Art Explosion; Rowing team: © Lawrence M. Sawyer/Getty Images; Runners: © Art Explosion; Soccer game: © Geoff Manasse/Getty Images.

The credits section for this book begins on page 562 and is considered an extension of the copyright page.

Library of Congress Cataloging-in-Publication Data

Williams, Melvin H.

Nutrition for health, fitness, & sport / Melvin H. Williams.—8th ed.

p. cm.

title: Nutrition for health, fitness, and sport.

Includes index.

ISBN 978-0-07-294371-9 - ISBN 0-07-294371-8 (hard copy : alk. paper)

1. Nutrition. 2. Physical fitness. 3. Sports—Physiological aspects. I. Title: Nutrition for health, fitness, & sport. II. Title.

QP141.W514 2007

612.3-dc22

2006006202

CIP

Dietary Reference Intakes (DRIs): Recommended Intakes for Individuals, ElementsFood and Nutrition Board, Institute of Medicine, National Academies

Lactation ≤18 y 1,300* 19–30 y 1,000* 31–50 y 1,000*	Pregnancy ≤18 y 19-30 y 31-50 y	Females 9-13 y 14-18 y 19-30 y 31-50 y 51-70 y >70 y	Males 9-13 y 14-18 y 19-30 y 31-50 y 51-70 y >70 y	Children 1–3 y 4–8 y	Infants 0-6 mo 7-12 mo	Life Stage Group
1,300* 1,000* 1,000*	1,000	1,300* 1,300* 1,000* 1,000* 1,200*	1,200	500* 800*	210° 270°	Calcium (mg/d)
44* 45* 45*	30,28	21* 24* 25* 25* 20* 20*	ನ್ ನೆ ಜೆ ಜೆ ಜೆ ಜೆ ಎ	11*	0.2° 5.5°	Chromium (µg/d)
1,300 1,300 1,300	1,000	700 900 900	999988	340 440	200° 220°	Copper (µg/d)
φ ω ω ω * * *	ယူယူယူ	w w w w w N	ָמְטֶּבְבָב <u>ְ</u>	0.7*	0.01*	Fluoride (mg/d)
290 290 290	220	120 150 150 150 150	120 150 150	88	110	lodine (µg/d)
10 9 9	222	& & & & & & & & & & & & & & & & & & &	∞∞∞∞=∞	7 10	0.27*	Iron (mg/d)
360 310 320	350	240 360 310 320 320 320	240 410 420 420	80 130	30° 75°	Magnesium (mg/d)
2.6* 2.6* 2.6*	2.0	1.8.8.9.6.6.	224 224 234 244 244	1.2* 1.5*	0.003*	Manganese (mg/d)
50 50	555	45 45 45 45	22222	17 22	ယူလူ	Molybdenum (µg/d)
2.6* 50 1,250 70 13 2.6* 50 700 70 12 2.6* 50 700 70 12	1,250 700 700	1,250 1,250 700 700 700 700	1,250 1,250 700 700 700	460 500	100* 275*	Phosphorus (mg/d)
70 70	888	555 555 555	5555556	20 30	1.5° 20*	Selenium (µg/d)
13 12	==5	∞ ∞ ∞ ∞ ∞ ∞	=====	υω	9 2.	Zinc (mg/d)

but lack of data or uncertainty in the data prevent being able to specify with confidence the percentage of individuals covered by this intake. NOTE: This table presents Recommended Dietary Allowances (RDAs) in **bold type** and Adequate Intakes (AIs) in ordinary type followed by an asterisk (*). RDAs and AIs may both be used as goals for individual intake. RDAs are set to meet the needs of almost all (97 to 98 percent) individuals in a group. For healthy breastfed infants, the AI is the mean intake. The AI for other life stage and gender groups is believed to cover needs of all individuals in the group.

and Choline (1998); Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids (2000); and Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc (2001). These reports may be accessed via www.nap.edu. SOURCES: Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride (1997); Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B-6, Folate, Vitamin B-12, Pantothenic Acid, Biotin,

Copyright 2001 by the National Academy of Sciences. All rights reserved.

Dietary Reference Intakes (DRIs): Recommended Intakes for Individuals, MacronutrientsFood and Nutrition Board, Institute of Medicine, National Academies

Lactation 14–18 y 19–30 y 31–50 y	Pregnancy 14–18 y 19–30 y 31–50 y	Females 9-13 y 14-18 y 19-30 y 19-30 y 31-50 y 51-70 y >70 y	Males 9-13 y 14-18 y 19-30 y 31-50 y 51-70 y >70 y	Children 1-3 y 4-8 y	Infants 0-6 mo 7-12 mo	Life Stage Group
210 210 210	175 175	130 130 130 130	33333	130 130	60* 95*	Carbohydrate (g/d)
29* 29* 29*	28. 28. 28.	26* 26* 25* 25* 21* 21*	30 30 30 30	19* 25*	33	Total Fiber (g/d)
<u> </u>	333	888888	333333	N D	31. 30.	Fat (g/d)
٦ <u>.</u> ۵. ۵.	ಫ಼ಫ಼ಫ	11222	¥ 4 7 7 5 2	7* 10*	4.4° 4.6°	Linoleic Acid (g/d)
	<u>777</u>		1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	0.7* 0.9*	0.5*	α-Linolenic Acid (g/d)
צצצ	צצצ	46 46 46 46	5555554	13 19	13.5 13.5	Protein ^a (g/d)

NOTE: This table presents Recommended Dietary Allowances (RDAs) in **bold type** and Adequate Intakes (AIs) in ordinary type followed by an asterisk (*). RDAs and AIs may both be used as goals for individual intake. RDAs are set to meet the needs of almost all (97 to 98 percent) individuals in a group. For healthy breastfed infants, the AI is the mean intake. The AI for other life stage and gender groups is believed to cover needs of all individuals in the group, but lack of data or uncertainty in the data prevent being able to specify with confidence the percentage of individuals covered by this intake.

Copyright 2002 by the National Academy of Sciences. All rights reserved. SOURCES: Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (2002). This report may be accessed via www.nap.edu.

[&]quot;Based on 0.8g protein/kg body weight for reference body weight.

 $^{^{}b}ND = not determinable at this time$

To Jeanne, Sara and Nik May Serena, Jeff, and Daniel Newsom and

To My Teachers, Colleagues, and Students

Preface

In this new millennium, our love affair with fitness and sports continues to grow. Worldwide, although physical inactivity is still very prevalent in developed nations, more of us are joining fitness facilities or initiating fitness programs, such as bicycling, running, swimming, walking, and weight training. Improvement in health and fitness is one of the major reasons that more and more people initiate an exercise program. Research has shown that adults who become physically active also may become more interested in other aspects of their lifestyles—particularly nutrition—that may affect their health in a positive way.

Nutrition is the study of foods and their effects upon health, development, and performance. Although a relatively young science, nutrition research has made a significant contribution to our knowledge of essential nutrient needs. During the first part of the twentieth century, most nutrition research focused on identification of essential nutrients and amounts needed to prevent nutrientdeficiency diseases, such as scurvy from inadequate vitamin C. More recently, medical researchers have focused on the effects of foods and their specific constituents as a means to help prevent major chronic diseases, such as heart disease and cancer, that are epidemic in developed countries. Nutriceutical is a relatively new term used to characterize the drug, or medical, effects of a particular nutrient. Recent research findings continue to indicate that our diet is one of the most important determinants of our health status, and although individual nutrients are still being evaluated for possible health benefits, research is also focusing on dietary patterns, or the totality of the diet, and resultant health benefits.

Other than the health benefits of exercise and fitness, many physically active individuals also are finding the joy of athletic competition, participating in local sport events such as golf tournaments, tennis matches, triathlons, and road races. Individuals who compete athletically are always looking for a means to improve performance, be it a new piece of equipment or an improved training method. In this regard, proper nutrition may be a very important factor in improving exercise and sport performance. The United States Anti-Doping Agency (USADA), in its Optimal Dietary Intake guidelines for competitive athletes, notes that now more than ever, athletes need accurate sports nutrition information, indicating that optimal nutrition is an integral part of peak performance, while an inadequate diet and lack of fuel can limit an athlete's potential for maximum performance. Although the effect of diet on sport and exercise performance had been studied only sporadically prior to 1970, subsequently numerous sport scientists and sport nutritionists have studied the performanceenhancing effects of nutrition, such as diet composition and dietary supplements. Results of these studies have provided nutritional guidance to enhance performance in specific athletic endeavors.

With the completion of the Human Genome Project, gene therapies are currently being developed for the medical treatment of various health problems. Moreover, some contend that genetic manipulations may be used to enhance sports performance. For example, gene doping to increase insulin-like growth factor, which can stimulate muscle growth, may be applied to sport.

Our personal genetic code plays an important role in determining our health status and our sports abilities, and futurists speculate that one day each of us will carry our own genetic chip that will enable us to tailor food selection and exercise programs to optimize our health and sport performance. Such may be the case, but for the time being we must depend on available scientific evidence to provide us with prudent guidelines.

Each year literally thousands of published studies and reviews analyze the effects of nutrition on health or exercise and sports performance. The major purpose of this text is to evaluate these scientific data and present prudent recommendations for individuals who want to modify their diet for optimal health or exercise/sport performance.

Textbook Overview

This book uses a question-answer approach, which is convenient when you may have occasional short periods to study, such as riding a bus or during a lunch break. In addition, the questions are arranged in a logical sequence, the answer to one question often leading into the question that follows. Where appropriate, cross-referencing within the text is used to expand the discussion. No deep scientific background is needed for the chemical aspects of nutrition and energy expenditure, as these have been simplified. Instructors who use this book as a course text may add details of biochemistry as they feel necessary.

Chapter 1 introduces you to the general effects of exercise and nutrition on health-related and sports-related fitness, including the importance of well-controlled scientific research. Chapter 2 provides a broad overview of sound guidelines relative to nutrition for optimal health and physical performance. Chapter 3 focuses upon energy and energy pathways in the body, the key to all exercise and sport activities.

Chapters 4 through 9 deal with the six basic nutrients—carbohydrate, fat, protein, vitamins, minerals, and water—with emphasis on the health and performance implications for the

physically active individual. Chapters 10 through 12 review concepts of body composition and weight control, with suggestions on how to gain or lose body weight through diet and exercise, as well as the implications of such changes for health and athletic performance. Chapter 13 is a new chapter for this edition, covering several drug foods, such as alcohol and caffeine, and other related dietary supplements that previously had been integrated in other chapters. Instructors who prefer to adhere to the chapter content of previous editions may have students read the relevant sections of chapter 13. Several appendixes complement the text, providing data on caloric expenditure during exercise, methods to determine body composition, nutritional value of fast foods, and other information pertinent to physically active individuals.

New to the Eight Edition

The content throughout each chapter of the book has been updated, where merited, based on contemporary research findings regarding the effects of nutritional practices on health, fitness, and sport performance. Over 450 new references, including clinical studies, reviews, and meta-analyses, have been added to the text. Some key changes regarding specific chapters follow.

Chapter 1—Introduction to Nutrition for Health, Fitness, and Sports Performance

 New reviews on the role of exercise may play as a means to enhance health.

Chapter 2—Healthful Nutrition for Fitness and Sport

- Detailed coverage for the new MyPyramid food guide, the United States Department of Agriculture's sixth edition detailing healthy eating guidelines for Americans.
- · New information on food colors and potential health benefits.

Chapter 3—Human Energy

New information on factors contributing to fatigue during exercise, including overreaching and overtraining.

Chapter 4—Carbohydrate: The Main Energy Food

- New viewpoints on how impaired carbohydrate stores in the body may contribute to fatigue during exercise.
- Optimizing the type of carbohydrate to ingest during exercise as a means to enhance performance.
- Expanded discussion of the role of healthy carbohydrates in the diet.

Chapter 5—Fat: An Important Energy Source during Exercise

- Enhanced discussion of the role that modification of dietary fat intake, such as *trans* ft and omega-3 fatty acids, may play in determining health status.
- New National Cholesterol Education Program guidelines involving when it may be appropriate to recommend use of drugs to reduce serum cholesterol.

Chapter 6—Protein: The Tissue Builder

- Updated information on protein and carbohydrate intake to promote protein synthesis following exercise.
- New research findings with branched-chain amino acid supplementation and glucosamine-chondroitin supplementation.

• Updated research findings regarding creatine supplementation and its effect on exercise performance and health status.

Chapter 7—Vitamins: The Organic Regulators

- New viewpoints on the possible role of vitamin D in health.
- New research findings regarding the limitations to health improvement or performance enhancement from antioxidant vitamin supplementation.

Chapter 8-Minerals: The Inorganic Regulators

- An evaluation of the role that dietary calcium may play in weight control.
- Discussion of the new American College of Sports Medicine position stand on physical activity and bone health.

Chapter 9-Water, Electrolytes, and Temperature Regulation

- An expanded discussion of exercise-associated hyponatremia (EAH), including its etiology and potential dangers.
- Discussion of the new American College of Sports Medicine position stand on exercise and hypertension.

Chapter 10—Body Weight and Composition for Health and Sport

- Updated discussion of the relationship of body mass index (BMI) and waist circumference to health status and mortality.
- Updated information on the role of dietary supplements in weight loss.

Chapter 11—Weight Maintenance and Loss through Proper Nutrition and Exercise

- Recent research comparing the effectiveness of various diets, such as low-fat and low-carbohydrate, for weight loss.
- Twenty ways to decrease caloric intake.

Chapter 12—Weight Gaining through Proper Nutrition and Exercise

• Incorporated some general guidelines for percent macronutrient (carbohydrate, fat, protein) intake for competitive bodybuilders.

Chapter 13—Food Drugs and Related Supplements

 A new chapter incorporating recent information on alcohol, caffeine, ephedrine, sodium bicarbonate, selected herbals, and anabolic dietary supplements and their effects on health and sport performance.

Enhanced Pedagogy

Each chapter contains several features to help enhance the learning process. Chapter Learning Objectives are presented at the beginning of each chapter, highlighting the key points and serving as a studying guide. Key Terms also are listed at the beginning of each chapter, along with the page number on which they are first highlighted and defined. Although some terms may appear in the text before they are defined, a thorough glossary includes the key terms as well as other terms warranting definition. Key Concept Check provides a summary of essential information presented in each main section. Students are encouraged to participate in several practical activities to help reinforce learning. Check for Yourself includes individual activities, such as checking food labels at the supermarket or measuring your body fat percentage, while the Application Exercise at the end of each chapter may involve more extensive involvement, such as a case study in weight control

involving yourself or a survey of an athletic team. Students may wish to peruse all application exercises at the beginning of the course, as some may take several weeks or months to complete.

The bibliographic references are of three types. Books listed provide broad coverage of the major topics in the chapter. Reviews are detailed analyses of selected topics, usually involving a synthesis and analysis of specific research studies. The specific studies listed are primary research studies. The reference lists have been completely updated for this eighth edition, with the inclusion of nearly 450 new references, and provide the scientific basis for the new concepts or additional support for those concepts previously developed. These references provide greater in-depth reading materials for the interested student. Although the content of this book is based on appropriate scientific studies, a reference-citation style is not used, that is, each statement is not referenced by a bibliographic source. However, names of authors may be used to highlight a reference source where deemed appropriate.

This book is designed primarily to serve as a college text in professional preparation programs in health and physical education, exercise science, athletic training, sports medicine, and sports nutrition. It is also directed to the physically active individual interested in the nutritional aspects of physical and athletic performance.

Those who may desire to initiate a physical training program may also find the nutritional information useful, as well as the guidelines for initiating a training program. This book may serve as a handy reference for coaches, trainers, and athletes. With the tremendous expansion of youth sports programs, parents may find the information valuable relative to the nutritional requirements of their active children.

In summary, the major purpose of this book is to help provide a sound knowledge base relative to the role that nutrition, complemented by exercise, may play in the enhancement of both health and sport performance. Hopefully, the information provided in this text will help the reader develop a more healthful and performanceenhancing diet. Bon appetit!

Acknowledgements

This book would not be possible without the many medical/health scientists and exercise/sport scientists throughout the world who, through their numerous studies and research, have provided the scientific data that underlie its development. I am fortunate to have developed a friendship with many of you, and I extend my sincere appreciation to all of you.

The reviewers of the seven previous editions have played an integral role in the changes that are made, and this edition is no exception. I wish to extend a special note of appreciation to those who reviewed the seventh edition text and provided many valuable suggestions for improving the eighth edition manuscript.

Eight Edition

Gale Carey Tom Kelly Alana Cline George Langford Sandra Graham Kathy Munoz Roy Wohl Jie Kang

Seventh Edition

Kathy Hosig John L. Bergen University of West Florida Virginia Tech Thomas Kelly Rebecca Cole Western Oregon University Utah State University Susan Fullmer Diana Kirk Brigham Young University San Jose State University Candance Gabel Nweze Nnakwe Illinois State University University of Missouri-Columbia Christine Rosenbloom Shelley R. Hancock Georgia State University

Sixth Edition

The University of Alabama

George Mason University

Cherie Moore

Cuesta College

Jack Benson Donna R. Potacco William Paterson University Eastern Washington University Barbara Bushman Susan J. Rudge Southwest Missouri State Miami University University J. Andres Vasconcellos Dorothy Chen-Maynard Chapman University California Sate University— Universidad de las Americas San Bernardino Michael J. Webster Marie Dunford University of Southern California State University— Mississippi Fresno Suzy Weems David Gee Stephen F. Austin State Central Washington University University Sharlene Holladay Roy Wohl Washburn University

I would like to acknowledge deep gratitude to Lynne Meyers, Senior Developmental Editor, for her friendly and cooperative support during the developmental process of this book, to April Southwood, Project Manager, for her assistance during the production process, and to Colin Wheatley, Publisher, for his continued support. Many thanks also to Jane Stembridge for her meticulous review as a copyeditor. Finally, to the memory of Pat McSwegin for her friendship and input during the first five editions of this book.

> Melvin H. Williams Norfolk, Virginia

Brief Contents

and Sports Performance I

CHAPTER TWO Healthful Nutrition for Fitness and Sport 37

Introduction to Nutrition for Health, Fitness

CHAPTER THREE Human Energy 81

CHAPTER ONE

CHAPTER FOUR Carbohydrates: The Main Energy Food 111

CHAPTER FIVE Fat: An Important Energy Source during Exercise 153

CHAPTER SIX Protein: The Tissue Builder 193

CHAPTER SEVEN Vitamins: The Organic Regulators 237

CHAPTER EIGHT Minerals: The Inorganic Regulators 279

CHAPTER NINE Water, Electrolytes, and Temperature Regulation 319

CHAPTER TEN Body Weight and Composition for Health and Sport 363

CHAPTER ELEVEN Weight Maintenance and Loss through

Proper Nutrition and Exercise 399

CHAPTER TWELVE Weight Gaining through Proper Nutrition and Exercise 451

CHAPTER THIRTEEN Food Drugs and Related Supplements 477

Contents

Preface xiii

CHAPTER ONE

Introduction to Nutrition for Health, Fitness, and Sports Performance 1

Nutrition, Exercise, and Health-Related Fitness 4

Exercise and Health-Related Fitness 4

What is health-related fitness? 4

What is the role of exercise in health promotion? 5

How does exercise enhance health? 5

Do most of us exercise enough? 5

How much physical activity is enough for health benefits? 7

What are some general guidelines for exercising properly for someone who wants to be more physically active? 8

Can too much exercise be harmful to my health? 8

Nutrition and Health-Related Fitness 9

What is nutrition? 9

What is the role of nutrition in health promotion? 10

Do we eat right? 10

What are some general guidelines for healthy eating? 11

Am I eating right? 12

Are there additional health benefits when both exercise

and diet habits are improved? 12

Nutrition, Exercise, and Sports-Related Fitness 13

What is sports-related fitness? 13

What is sports nutrition? 13

Are athletes today receiving adequate nutrition? 15

How important is nutrition to athletic performance? 15

What should I eat to help optimize my athletic performance? 17

Dietary Supplements and Health 17

What are dietary supplements? 17

Will dietary supplements improve my health? 18

Can dietary supplements harm my health? 19

Dietary Supplements and Sports Performance 20

What is an ergogenic aid? 20

Why are nutritional ergogenics so popular? 20

Are nutritional ergogenics effective? 20

Are nutritional ergogenics safe? 21

Are nutritional ergogenics legal? 21

Nutritional Quackery in Health and Sports 22

What is nutritional quackery? 22

Why is nutritional quackery so prevalent in athletics? 23

How do I recognize nutritional quackery in health and sports? 24

Where can I get sound nutritional information

to combat quackery in health and sports? 24

Research and Prudent Recommendations 25

What types of research provide valid information? 26

Why do we often hear contradictory advice about the effects of nutrition on health or physical performance? 27

What is the basis for the dietary recommendations presented in this book? 28

CHAPTER TWO

Healthful Nutrition for Fitness and Sport 37

Essential Nutrients and Recommended Nutrient Intakes 38

What are essential nutrients? 38

What are nonessential nutrients? 40

How are recommended dietary intakes determined? 40

The Balanced Diet and Nutrient Density 41

What is a balanced diet? 41

What foods should I eat to obtain the nutrients I need? 42

What is the MyPyramid Food Guide? 42

What is the Food Exchange System? 44

What is the key-nutrient concept for obtaining a balanced diet? 44

What is the concept of nutrient density? 46

Will use of the MyPyramid Food Guide or the Food Exchange System guarantee me optimal nutrition? 46

Healthful Dietary Guidelines 49

What is the basis underlying the development of healthful dietary guidelines? 49

What are the recommended dietary guidelines for reducing the risk of chronic disease? 49

Vegetarianism 54

What types of foods does a vegetarian eat? 54

What are some of the nutritional concerns with a vegetarian diet? 55 ls a vegetarian diet more healthful than a nonvegetarian diet? 57

How can I become a vegetarian? 59

Will a vegetarian diet affect physical performance potential? 60

Consumer Nutrition—Food Labels and Health Claims 60

What nutrition information do food labels provide? 60

How can I use this information to select a healthier diet? 61

What health claims are allowed on food products? 63

What are functional foods? 65

Consumer Nutrition—Food Quality and Safety 66

Is current food biotechnology effective and safe? 66

Is current food production safe? 66

Does commercial food processing affect food quality and safety? 68

Does home food processing affect food quality and safety? 68

What is food poisoning? 69

Are food additives safe? 70

Why do some people experience adverse reactions to some foods? 70

Healthful Nutrition Recommendations for

Better Physical Performance 71

What should I eat during training? 71

When and what should I eat just prior to competition? 72

What should I eat during competition? 73

What should I eat after competition? 73

How important is breakfast for the physically active individual? 73

How about the use of liquid meals, sports bars, and dietary supplements? 73

How do gender and age influence nutritional recommendations for enhanced physical performance? 74

How can I eat more nutritiously while traveling for competition? 75

CHAPTER THREE

Human Energy 81

Measures of Energy 82

What is energy? 82

How do we measure work and energy? 83

What is the most commonly used measure of energy? 85

Human Energy Systems 86

How is energy stored in the body? 86

What are the human energy systems? 88

What nutrients are necessary for the operation of the human energy systems? 90

Human Energy Metabolism during Rest 91

What is metabolism? 91

What factors account for the amount of energy expended during rest? 91

What effect does eating a meal have on the metabolic rate? 92

How can I estimate my daily resting energy expenditure (REE)? 92

What genetic factors affect my REE? 92

How does body composition affect my REE? 93

What environmental factors may also influence the REE? 93

What energy sources are used during rest? 93

Human Energy Metabolism during Exercise 94

What effect does muscular exercise have on the metabolic rate? 94

How is exercise intensity measured? 95

How is the energy expenditure of exercise metabolism expressed? 96

How can I tell what my metabolic rate is during exercise? 96

How can I determine the energy cost of exercise? 98

What are the best types of activities to increase energy expenditure? 98

Does exercise affect my resting energy expenditure (REE)? 100

Does exercise affect the thermic effect of food (TEF)? 100

How much energy do I need to consume daily? 100

Human Energy Systems and Fatigue during Exercise 103

What energy systems are used during exercise? 103

What energy sources are used during exercise? 104

What is fatigue? 104

How can I delay the onset of fatigue? 105

How is nutrition related to fatigue processes? 106

CHAPTER FOUR

Carbohydrates: The Main Energy Food 111

Dietary Carbohydrates 112

What are the different types of dietary carbohydrates? 112

What are some common foods high in carbohydrate content? 114

How much carbohydrate do we need in the diet? 115

Metabolism and Function 116

How do dietary carbohydrates get into the body? 116

What happens to the carbohydrate after it is absorbed into the

How much total energy do we store as carbohydrate? 120

Can the human body make carbohydrates from protein and fat? 120

What are the major functions of carbohydrate in human nutrition? 121

Carbohydrates for Exercise 122

In what types of activities does the body rely heavily on carbohydrate as an energy source? 122

Why is carbohydrate an important energy source for exercise? 123

What effect does endurance training have on carbohydrate metabolism? 123

How is hypoglycemia related to the development of fatigue? 124

How is low muscle glycogen related to the development of fatigue? 125

How are low endogenous carbohydrate levels related to the central fatigue hypothesis? 126

Will eating carbohydrate immediately before or during an event improve physical performance? 127

When, how much, and in what form should carbohydrates be consumed before or during exercise? 130

What is the importance of carbohydrate replenishment after prolonged exercise? 132

Will a high-carbohydrate diet enhance my daily exercise training? 133

Carbohydrate Loading 135

What is carbohydrate, or glycogen, loading? 135

What type of athlete would benefit from carbohydrate loading? 135

How do you carbohydrate load? 135

Will carbohydrate loading increase muscle glycogen concentration? 136

How do I know if my muscles have increased their glycogen stores? 137

Will carbohydrate loading improve exercise performance? 138

Are there any possible detrimental effects relative to carbohydrate loading? 139

Carbohydrates: Ergogenic Aspects 140

Do the metabolic by-products of carbohydrate exert an ergogenic effect? 140

Dietary Carbohydrates: Health Implications 142

How do refined sugars and starches affect my health? 142

Are artificial sweeteners safe? 143

Why are complex carbohydrates thought to be beneficial to my health? 143

Why should I eat foods rich in fiber? 144

What is lactose intolerance? 145

Does exercise exert any beneficial health effects related to carbohydrate metabolism? 145

CHAPTER FIVE

Fat: An Important Energy Source during Exercise 153

Dietary Fat 154

What are the different types of dietary fats? 154

What are triglycerides? 154

What are some common foods high in fat content? 155

How do I calculate the percentage of fat Calories in a food? 156

What are fat substitutes? 157

What is cholesterol? 157

What foods contain cholesterol? 157

What are phospholipids? 157

What foods contain phospholipids? 158

How much fat and cholesterol do we need in the diet? 159

Metabolism and Function 160

How does dietary fat get into the body? 161

What happens to the lipid once it gets in the body? 162

What are the different types of lipoproteins? 162

Can the body make fat from protein and carbohydrate? 163

What are the major functions of the body lipids? 164

How much total energy is stored in the body as fat? 164

Fats and Exercise 165

Are fats used as an energy source during exercise? 165

Do women use fats more efficiently during exercise

than men? 166

What effect does exercise training have

on fat metabolism during exercise? 166

Fats: Ergogenic Aspects 167

What is fat loading? 167

Will fasting help improve my performance? 169

Can the use of medium-chain triglycerides improve endurance performance? 170

Is the glycerol portion of triglycerides an effective ergogenic aid? 170 How effective are lecithin or choline supplements? 171

Why are omega-3 fatty acids suggested to be ergogenic, and do they work? 171

Can carnitine supplements enhance fat metabolism and physical performance? 172

Can hydroxycitrate (HCA) enhance endurance performance? 173
Can conjugated linoleic acid (CLA) enhance exercise performance? 173
What's the bottom line regarding the ergogenic effects of fat-burning

diets or strategies? 173

Dietary Fats and Cholesterol: Health Implications 174

How does cardiovascular disease develop? 174

How do the different forms of serum lipids affect the development of atherosclerosis? 175

Can I reduce my serum lipid levels

and possibly reverse atherosclerosis? 177

What should I eat to modify my serum lipid profile favorably? 178

Can exercise training also elicit favorable changes in the serum lipid profile? 186

CHAPTER SIX

Protein: The Tissue Builder 193

Dietary Protein 194

What is protein? 194

Is there a difference between animal and plant protein? 195

What are some common foods that are good sources of protein? 196

How much dietary protein do I need? 196

How much of the essential amino acids do I need? 198

What are some dietary guidelines to ensure adequate protein

intake? 198

Metabolism and Function 199

What happens to protein in the human body? 199

Can protein be formed from carbohydrates and fats? 200

What are the major functions of protein in human nutrition? 200

Proteins and Exercise 201

Are proteins used for energy during exercise? 201

Does exercise increase protein losses in other ways? 203

What happens to protein metabolism during recovery after exercise? 203

What effect does exercise training have upon protein metabolism? 203

Do individuals in strenuous physical training, including the developing adolescent athlete, need more protein in the diet? 204

What are some general recommendations relative to dietary protein

intake for athletes? 205

Protein: Ergogenic Aspects 208

Are high-protein diets or special protein supplements necessary? 208 Are amino acid, amine, and related nitrogen-containing supplements effective ergogenic aids? 211

Dietary Protein: Health Implications 225

Does a deficiency of dietary protein pose any health risks? 226

Does excessive protein intake pose any health risks? 226

Does the consumption of individual amino acids pose any health

risks? 228

CHAPTER SEVEN

Vitamins: The Organic Regulators 237

Basic Facts 238

What are vitamins and how do they work? 238

What vitamins are essential to human nutrition? 240

In general, how do deficiencies or excesses of vitamins influence health or physical performance? 240

Fat-Soluble Vitamins 241

Vitamin A (retinol) 241

Vitamin D (cholecalciferol) 244

Vitamin E (alpha-tocopherol) 246

Vitamin K (phylloquinone; menoquinone) 247

Water-Soluble Vitamins 248

Thiamin (vitamin B₁) 248

Riboflavin (vitamin B₂) 250

Niacin 250

Vitamin B₆ (pyridoxine) 251

Vitamin B₁₂ (cobalamin) 252

Folate (folic acid) 253

Pantothenic acid 254

Biotin 255

Choline 255

Vitamin B complex 256

Vitamin C (ascorbic acid) 257

Vitamin Supplements: Ergogenic Aspects 259

Should physically active individuals take vitamin supplements? 259

Can the antioxidant vitamins prevent muscle damage during training? 260

How effective are the special vitamin supplements marketed for athletes? 261

What's the bottom line regarding vitamin supplements for athletes? 262

Vitamin Supplements: Health Aspects 263

Can I obtain the vitamins I need through my diet? 263

Why are vitamin supplements often recommended? 264

Why do individuals take vitamin megadoses? 265

Do foods rich in antioxidant vitamins help deter disease? 265

Do antioxidant vitamin supplements help deter disease? 266

How much of a vitamin supplement is too much? 268

If I want to take a vitamin-mineral supplement, what are some prudent guidelines? 269

CHAPTER EIGHT

Minerals: The Inorganic Regulators 279

Basic Facts 280

What are minerals, and what is their importance to humans? 280 What minerals are essential to human nutrition? 281 In general, how do deficiencies or excesses of minerals influence health or physical performance? 281

Macrominerals 282

Calcium (Ca) 282

Phosphorus (P) 290

Magnesium (Mg) 292

Trace Minerals 294

Iron (Fe) 294

Copper (Cu) 300

Zinc (Zn) 301

Chromium (Cr) 302

Selenium (Se) 304

Boron (B) 305

Vanadium (V) 306

Other Trace Minerals 307

Mineral Supplements: Exercise and Health 309

Does exercise increase my need for minerals? 309

Can I obtain the minerals I need through my diet? 309

Are mineral megadoses harmful? 310

Should physically active individuals take mineral supplements? 310

CHAPTER NINE

Water, Electrolytes, and Temperature Regulation 319

Water 320

How much water do you need per day? 320

What else is in the water we drink? 321

Where is water stored in the body? 322

How is body water regulated? 322

What are the major functions of water in the body? 324

Can drinking more water confer any health benefits? 324

Electrolytes 324

What is an electrolyte? 324

Sodium (Na) 325

Chloride (CI) 326

Potassium (K) 327

Regulation of Body Temperature 328

What is the normal body temperature? 328

What are the major factors that influence body temperature? 328

How does the body regulate its own temperature? 329

What environmental conditions may predispose an athletic individual to hyperthermia? 329

How does exercise affect body temperature? 330

How is body heat dissipated during exercise? 331

Fluid and Electrolyte Losses 333

How does environmental heat affect physical performance? 333 How do dehydration and hypohydration affect physical

performance? 333

How fast may an individual dehydrate while exercising? 335

How can I determine my sweat rate? 335

What is the composition of sweat? 335

Is excessive sweating likely to create an electrolyte deficiency? 336

Fluid, Carbohydrate, and Electrolyte Replacement 336

Which is most important to replace during exercise in the heat—water, carbohydrate, or electrolytes? 336

What are some sound guidelines for maintaining water (fluid) balance during exercise? 336

What factors influence gastric emptying and intestinal absorption? 338

How should carbohydrate be replaced during exercise in the heat? 339

How should electrolytes be replaced during or following exercise? 340

Are salt tablets or potassium supplements necessary? 342

What are some prudent guidelines relative to fluid replacement while exercising under warm or hot environmental conditions? 343

Ergogenic Aspects 346

Does glycerol supplementation enhance endurance performance during exercise under warm environmental conditions? 346

Health Aspects 348

Heat Injuries 348

What are the potential health hazards of excessive heat stress imposed on the body? 348

What are the symptoms and treatment of heat injuries? 349

Do some individuals have problems tolerating exercise in the heat? 349

How can I reduce the hazards associated with exercise in a hot environment? 351

How can I become acclimatized to exercise in the heat? 352

High Blood Pressure 353

What is high blood pressure, or hypertension? 353

How is high blood pressure treated? 353

What dietary modifications may help reduce or prevent hypertension? 354

Can exercise help prevent or treat hypertension? 356

CHAPTER TEN

Body Weight and Composition for Health and Sport 363

Body Weight and Composition 365

What is the ideal body weight? 365

What are the values and limitations of the BMI? 365

What is the composition of the body? 365

What techniques are available to measure body composition and how accurate are they? 366

What problems may be associated with rigid adherence to body fat percentages in sport? 370

How much should I weigh or how much body fat should I have? 370

Regulation of Body Weight and Composition 372

How does the human body normally control its own weight? 372 What is the cause of obesity? 374 How is fat deposited in the body? 378

Weight Gain, Obesity, and Health 379

What health problems are associated with overweight and obesity? 379 How does the location of fat in the body affect health? 380 Does being obese increase health risks in youth? 381 Does being physically fit negate the adverse health effects associated with being overweight? 381

Excessive Weight Loss and Health 382

What health problems are associated with improper weight-loss programs and excessive weight losses? 383 What are the major eating disorders? 385 What eating problems are associated with sports? 386

Body Composition and Physical Performance 389

What effect does excess body weight have on physical performance? 389

Does excessive weight loss impair physical performance? 389

CHAPTER ELEVEN

Weight Maintenance and Loss through Proper Nutrition and Exercise 399

Basics of Weight Control 401

How many Calories are in a pound of body fat? 401 Is the caloric concept of weight control valid? 401 How many Calories do I need per day to maintain my body weight? 402 How much weight can I lose safely per week? 405 How can I determine the amount of body weight I need to lose? 405

Behavior Modification 406

What is behavior modification? 406 How do I apply behavior-modification techniques in my weight-control program? 406

Dietary Modifications 408

How can I determine the number of Calories needed in a diet to lose weight? 408

How can I predict my body-weight loss through dieting alone? 409 Why does a person usually lose the most weight during the first week on a reducing diet? 410

Why does it become more difficult to lose weight after several weeks or months on a diet program? 410

What are the major characteristics of a sound diet for weight control? 410

Is it a good idea to count Calories when attempting to lose body weight? 413

What is the Food Exchange System? 413

How can I determine the number of Calories I eat daily? 414

What are some general guidelines I can use in the

selection and preparation of foods to reduce caloric intake? 417

How can I plan a nutritionally balanced, low-Calorie diet? 420

Are very-low-Calorie diets effective and desirable as a means to lose body weight? 422

Is it harmful to overeat occasionally? 422

Exercise Programs 423

What role does exercise play in weight reduction and weight maintenance? 423

Does exercise affect the appetite? 426

Does exercise affect the set point? 427

What types of exercise programs are most effective for losing body fat? 427

If I am inactive now, should I see a physician before I initiate an exercise program? 429

What other precautions would be advisable before I start an exercise program? 430

What is the general design of exercise programs for weight reduction? 430

What is the stimulus period of exercise? 430

What is an appropriate level of exercise intensity? 431

How can I determine the exercise intensity needed to achieve my target HR range? 433

How can I design my own exercise program? 435

How much exercise is needed to lose weight? 437

From what parts of the body does the weight loss occur during an exercise weight-reduction program? 438

Should I do low-intensity exercises to burn more fat? 438 Is spot reducing effective? 439

Is it possible to exercise and still not lose body weight? 439

What about the five or six pounds a person may lose during an hour of exercise? 440

Comprehensive Weight-Control Programs 441

Which is more effective for weight control—dieting or exercise? 441 If I want to lose weight through a national or local weight-loss program, what should I look for? 442

What type of weight-reduction program is advisable for young athletes? 443

What is the importance of prevention in a weight-control program? 443

CHAPTER TWELVE

Weight Gaining through Proper Nutrition and Exercise 451

Basic Considerations 452

Why are some individuals underweight? 452 What steps should I take if I want to gain weight? 453

Exercise Considerations 453

What are the primary purposes of resistance training? 454
What are the basic principles of resistance training? 454
What is an example of a resistance-training program that may help me to gain body weight as lean muscle mass? 456

How does the body gain weight with a resistance-training program? 457

Is any one type of resistance-training program or equipment more effective than others for gaining body weight? 464

If exercise burns Calories, won't I lose weight on a resistance-training program? 464

Are there any contraindications to resistance training? 465
Are there any health benefits associated with resistance training? 465
Can I combine aerobic and resistance-training exercises into one program? 467

Nutritional Considerations 468

How many Calories are needed to form one pound of muscle? 468 How can I determine the amount of Calories I need daily to gain one pound per week? 468

Is protein supplementation necessary during a weight-gaining program? 469

Are dietary supplements necessary during a weight-gaining program? 470

What is an example of a balanced diet that will help me gain weight? 470 Would such a high-Calorie diet be ill advised for some individuals? 471

CHAPTER THIRTEEN

Food Drugs and Related Supplements 477

Alcohol: Ergogenic Effects and Health Implications 478
What is the alcohol and nutrient content of typical alcoholic beverages? 478

What is the metabolic fate of alcohol in the body? 479 Is alcohol an effective ergogenic aid? 479

What effect can drinking alcohol have upon my health? 481

Caffeine: Ergogenic Effects and Health Implications 485
What is caffiene and in what food products is it found? 485
What effects does caffeine have on the body that may benefit
exercise performance? 485

Does caffeine enhance exercise performance? 486 Does drinking coffee, tea, or other caffeinated beverages pose any significant health risk? 489

Ephedra (ephedrine): Ergogenic Effects and Health Implications 492

What is ephedra (ephedrine)? 492

Does ephedrine enhance exercise performance? 492

Do dietary supplements containing ephedra pose any health risks? 493

Sodium Bicarbonate: Ergogenic Effects,

Safety, and Legality 493

What is Sodium bicarbonate? 493

Does sodium bicarbonate, or soda loading, enhance physical performance? 494

Is sodium bicarbonate supplementation safe and legal? 496

Anabolic Hormones and Dietary Supplements:

Erogenic Effects and Health Implications 496

Is human growth hormone (HGH) an effective, safe, and legal ergogenic aid? 497

Are testosterone and anabolic/androgenic steroids (AAS) effective, safe, and legal ergogenic aids? 497

Are anabolic prohormone dietary supplements effective, safe, and legal ergogenic aids? 499

Ginseng, Herbals, and Exercise and Sports Performance 500

Does ginseng or ciwujia enhance exercise or sport performance? 500

What herbals are effective ergogenic aids? 502

APPENDIX A Units of Measurement: English System—Metric System Equivalents 510

APPENDIX B Approximate Caloric Expenditure per Minute for Various Physical Activities 512

APPENDIX C Self-Test on Drinking Habits and Alcoholism 518

APPENDIX D Determination of Healthy Body Weight 519

APPENDIX E Exchange Lists for Meal Planning 524

APPENDIX F Calories, Percent Fat, Sodium, and Dietary Fiber Cholesterol in Selected Fast-Food Restaurant Products 535

APPENDIX G Energy Pathways of Carbohydrate, Fat, and Protein 537

APPENDIX H Small Steps: 120 Small Steps to a Healthier Diet and Increased Physical Activity 541

APPENDIX I Sample Menu for a 2000-Calorie Food Pattern 543

Glossary 546

Credits 562

Index 563

Introduction to Nutrition for Health, Fitness, and Sports Performance

KEY TERMS

antipromoters 10
chronic-training effect 16
dietary supplement 17
doping 21
ergogenic aids 20
epidemiological research 26
exercise 5
experimental research 26
health-related fitness 4
malnutrition 16
meta-analysis 28
nutrient 9
nutrition 9
physical activity 4

CHAPTER ONE

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

- Explain the role of both genetics and environment, particularly nutrition and exercise, in the determination of optimal health and successful sport performance.
- 2. List each of the components of health-related fitness, and then identify the potential health benefits of a physical fitness program designed to enhance both aerobic and musculoskeletal fitness.
- List the twelve guidelines underlying the Prudent Healthy Diet and discuss, in general, the importance of proper nutrition, including the role of dietary supplements, to optimal health.
- **4.** Understand the importance of proper nutrition, including the role of dietary supplements as ergogenic aids, to sports performance.
- **5.** Define nutritional quackery and understand the various strategies you can use to determine whether the claims of a dietary supplement are valid.
- 6. Explain what types of research have been used to evaluate the relationship between nutrition and health or sport performance, and evaluate the pros and cons of each type.

physical fitness 4
promoters 10
Prudent Healthy Diet 12
quackery 22
risk factor 3
Sedentary Death Syndrome (SeDS) 5
sports nutrition 14
sports-related fitness 13
sports supplements 20
structured physical activity 5
unstructured physical activity 4