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Preface

In the past two decades, there has been an explosion of interest to the study
of wave propagation in spatially discrete nonlinear systems.

Probably, the most prominent example of such a system is the famous
Fermi-Pasta-Ulam (FPU) lattice introduced in the pioneering work [Fermi
et. al (1955)]. E. Fermi, J. Pasta and S. Ulam studied numerically the
lattices of identical particles, i. e. monoatomic lattices, with cubic and
quartic interaction potentials. These lattices are known today as a- and
B-models, respectively. The aim of E. Fermi, J. Pasta and S. Ulam was to
show the relaxation to equipartition of the distribution of energy among
modes. Surprisingly enough, their numerical simulation yielded the oppo-
site result. They observed that, at least at low energy, the energy of the
system remained confined among the initial modes, instead of spreading
towards all modes.

This work motivated a great number of further numerical and an-
alytical investigations (for a relatively recent survey of the subject see
[Poggi and Ruffo (1997)]). We mention here the so-called Toda lat-
tice which is a completely integrable system. Due to the integrabil-
ity, the dynamics of Toda lattice is well-understood (see [Toda (1989);
Teschl (2000)]). Unfortunately, the Toda lattice is the only known com-
pletely integrable lattice of FPU type. Overwhelming majority of existing
results concern either particular explicit solutions, both exact and approx-
imate, or numerical simulation. Moreover, almost exclusively spatially ho-
mogeneous, . e. monoatomic, lattices are under consideration, although
inhomogeneous lattices (multiatomic lattices, lattices with impurities, etc.)
are of great interest.

One of the first rigorous results about general FPU type lattices was
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obtained in [Friesecke and Wattis (1994)]. G. Friesecke and J. Wattis have
proved the existence of solitary travelling waves in monoatomic FPU lattices
under some general assumptions on the potential of interparticle interac-
tion. The class of potentials includes the a- and 8- models, the Toda poten-
tial, the Lennard-Jones potential, and others. The approach of G. Friesecke
and J. Wattis is based on an appropriate constrained minimization pro-
cedure and the concentration compactness principle of P.-L. Lions [Lions
(1984)]. In this approach the wave speed is unknown and is determined a
posteriori through the corresponding Lagrange multiplier.

Later on D. Smets and M. Willem [Smets and Willem (1997)] considered
the travelling wave problem as a problem with prescribed speed. Under
another set of assumptions they have proved the existence of travelling
waves for every prescribed speed beyond the speed of sound (naturally
defined). The proof relies upon an appropriate version of the mountain pass
theorem without Palais-Smale condition. In [Pankov and Pfliiger (2000b)],
K. Pfliiger and the author revised the last approach considerably choosing
periodic travelling waves as a starting point. The existence of periodic
waves is obtained by means of the standard mountain pass theorem. Then
one gets solitary waves in the limit as the wave lengths goes to infinity. This
approach applies to many other problems (see, e. g. [Pankov and Pfliiger
(1999); Pankov and Pfliiger (2000a)]).

We mention also the series of papers [Friesecke and Pego (1999);
Friesecke and Pego (2002); Friesecke and Pego (2004a); Friesecke and Pego
(2004b)], where near sonic solitary waves are studied. Under some generic
assumptions on the potential of interaction near the origin the existence
of such waves is obtained by means of perturbation from the standard
Korteweg-de Vries (KdV) soliton. Many properties of near sonic waves are
discussed including their dynamical stability.

Another line of development was originated by B. Ruf and P. Srikanth
[Ruf and Srikanth (1994)] who considered time periodic motions of finite
FPU type lattices not necessary consisting of identical particles. Similar
problem for infinite lattices, still inhomogeneous, was studied in [Arioli and
Chabrowski (1997); Arioli and Gazzola (1995); Arioli and Gazzola (1996);
Arioli et. al (1996); Arioli and Szulkin (1997)] under more restrictive as-
sumptions on the potential.

Another class of discrete media consists of chains of coupled nonlinear
oscillators. One of the most known models of such kind is the so-called
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Frenkel-Kontorova model introduced by Ya. Frenkel and T. Kontorova in
1938. As we have learned from [Braun and Kivshar (2004)], the same model
have been appeared even before, in works by L. Prandtl and U. Dehlinger
(1928-29). For physical applications of the Frenkel-Kontorova and related
models we refer to [Braun and Kivshar (1998)] and [Braun and Kivshar
(2004)]. Also chains of oscillators as systems that support breathers, i. e.
spatially localized time periodic solutions, were studied in many works (see
[Aubry (1997); James (2003); Livi et. al (1997); MacKay and Aubry (1994);
Morgante et. al (2002)] and references therein). Some other mathematical
results that concern time periodic solutions and travelling waves in such
systems can be found in [Bak (2004); Bak and Pankov (2004); Bak and
Pankov (to appear); Iooss and Kirschgéssner (2000)].

Finally, we mention the third class of discrete systems of common in-
terest — discrete nonlinear Schrodinger equations. Such equations are not
considered here (see [Flach and Willis (1998); Hennig and Tsironis (1999);
Kevrekidis and Weinstein (2003); Pankov and Zakharchenko (2001); Wein-
stein (1999)] and references therein).

Contents

The main aim of this book is to present rigorous results on time pe-
riodic oscillations and travelling waves in FPU lattices. Also we consider
briefly similar results for chains of oscillators. Actually, we confine our-
self in the circle of the results obtained by variational methods. Therefore,
other approaches, like bifurcation theory and perturbation analysis, are not
presented here. As we mentioned before, discrete nonlinear Schrodinger
equations are outside the scope of the book.

In Chapter 1 we discuss general properties of equations that govern the
dynamics of FPU lattices and chains of oscillators, with special attention
paid to the well-posedness of the Cauchy problem. Also we remind here
basic facts from the spectral theory of linear difference operators that are
relevant to linear FPU lattices.

Chapter 2 deals with the existence of time periodic solutions in the lat-
ices of FPU type. Since we employ global variational techniques, it is not
natural to restrict the analysis to the case of spatially homogeneous, i. e.
monoatomic, lattices. Instead, we allow periodic spatial inhomogeneities
that means that we consider regular multiatomic lattices. We give com-
plete proofs of all principal results. At the same time, for the results that
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require more technicalities we outline basic ideas and skip details. Also,
skipping technical details, we present couple of results on the existence of
time periodic solutions in some chains of nonlinear oscillators.

In Chapters 3 and 4 we study travelling waves in monoatomic FPU
lattices. The first of them is devoted to waves with prescribed speed. This
statement of problem seems to be most natural. Here we consider two types
of travelling waves, periodic and solitary. In fact, we treat solitary waves
as a limit case of periodic waves when the wavelength goes to infinity. In
Chapter 4 we give some additional results. First of all, we present in details
the approach of G. Friesecke and J. Wattis. This approach is technically
more involved and, therefore, is postponed to the last chapter. Also we
discuss here several other results, including exponential decay of solitary
waves, as well as travelling waves in chains of oscillators.

Each chapter, except Chapter 3, ends with a special section devoted to
various comments and open problems. Comments and open problems that
concern travelling waves are put on the end of Chapter 4. Open problems
we offer reflect author’s point of view on what should be done next. Some
of them are accessible by existing methods, while others are probably hard
enough.

For reader’s convenience we include four appendices. Their aim is to
remind basic facts about functional spaces, concentration compactness, crit-
ical points and finite differences, and make the presentation more or less
self-contained.

Audience

As audience we have researchers in mind. Although the book is for-
mally self-contained, some acquaintance with variational methods and non-
linear analysis is recommended. Appropriate references are [Mawhin and
Willem (1989); Rabinowitz (1986); Struwe (2000); Willem (1996)] (varia-
tional methods) and [Zeidler (1995a); Zeidler (1995b)] (nonlinear analysis).
At the same time the present book is accessible to graduate students as
well, especially in combinations with the books on variational methods
listed above.

Acknowledgements
The present book was prepared during author’s staying at Texas A&M
University and the College of William and Mary as visiting professor. The



Preface xi

work was also supported in part by NATO, grant 970179.

The author thanks T. Bartsch, G. Papanicolaou, P. H. Rabinowitz,
A. Szulkin, Z.-Q. Wang and M. Willem for many interesting discussions
and valuable information.

Last but not least, I am deeply grateful to my wife Tanya for her gen-

erous support.
A. Pankov



Preface

3.

Contents

Infinite Lattice Systems

1.1
1.2
1.3
14
1.5

Equations of motion . . . ... ... ...
The Cauchy problem . . . . ... ... ..
Harmonic lattices . . . . . ... ... ...
Chains of coupled nonlinear oscillators . .
Comments and open problems. . . . . . .

Time Periodic Oscillations

2.1
2.2
2.3

2.4

2.5
2.6

Setting of problem . . ... ... ... ..
Positive definite case . . . . .. .. .. ..
Indefinitecase . . . . ... ... ......
2.3.1 Mainresult .............
2.3.2 Periodic approximations . . . . . .
2.3.3 Proof of mainresult .. ......
Additional results . . . .. ... ... ...
2.4.1 Degeneratecase . . . .. ... ...
2.4.2 Constrained minimization . . . . .
2.4.3 Multibumps . . ... .. ... ...

2.4.4 Lattices without spatial periodicity
2.4.5 Finite lattices . . . ... ......
Chains of oscillators . . . . .. ... ...
Comments and open problems. . . . . . .

Travelling Waves: Waves with Prescribed Speed

xiii

..........

vii

10
16
24

27

27
34
42
42
46
54
56
56
58
59
61
62
64
70

75



Xiv

Travelling Waves and Periodic Oscillations in FPU Lattices

3.1 Statementof problem . . ... ... ... ..........
3.2 Periodicwaves . . ... .. . ...
3.2.1 Variational setting . . . . .. ... ... .......
3.2.2 Monotone waves . . . . . ... e oo
3.2.3 Nonmonotone and subsonic waves . . . . . . ... ..
3.3 Solitary waves . . . . . .. . o ae e e
3.3.1 Variational statement of the problem . . . . ... ..
3.3.2 From periodic waves to solitary ones . . . ... ...
3.3.3 Global structure of periodic waves . . ... ... ..
334 Examples ... .. ... ... ... .
3.4 Ground waves: existence and convergence . . . .. .. ...
3.4.1 Ground waves: periodiccase . . . . . . ... ... ..
3.4.2 Solitary ground waves . . . . .. ... ... ... ..
3.4.3 Monotonicity . . .. .. ...
3.5 Nearsonicwaves . . . . .. ... ... oo,
3.5.1 Amplitude estimate . . . . . ... ... ... .....
3.5.2 Nonglobally defined potentials . . . . . ... ... ..

Travelling Waves: Further Results

4.1 Solitary waves and constrained minimization . .. .. ...
4.1.1 Statementof problem. . .. ..............
4.1.2 The minimization problem: technical results . . . . .
4.1.3 The minimization problem: existence . . . .. .. ..
414 Proofofmainresult ... ...............
4.1.5 Lennard-Jones type potentials . . . . . ... ... ..

4.2 Other types of travelling waves . . . .. ... ........
4.2.1 Waves with periodic profile functions . . . . ... ..
4.2.2 Solitary waves whose profiles vanish at infinity . . . .

4.3 Yet another constrained minimization problem ... .. ..

4.4 Remark on FPU B-model . .. ... ... ..........

4.5 Exponentialdecay . ... ... ... .............
4.6 Travelling waves in chains of oscillators. . . . . ... .. ..
4.7 Comments and open problems . . . . .. ... ... .....

Appendix A Functional Spaces

A.l Spacesof sequences . . . . . . . ... ... ...
A.2 Spaces of functionsonrealline . ... ............

Appendix B Concentration Compactness

121

121
121
123
133
140
143
146
146
148
150
152
154
160
163

167

167
168

173



Contents XV

Appendix C Critical Point Theory 177
C.1 Differentiable functionals. . . . .. .. ... ... ...... 177
C.2 Mountain pass theorem . . . ... ... .. ... ...... 178
C.3 Linking theorems . . . . . ... ... ... ... ....... 179

Appendix D Difference Calculus 183

Bibliography 185

Index 193



Chapter 1

Infinite Lattice Systems

1.1 Equations of motion

We consider a one dimensional chain of particles with nearest neighbor
interaction. Equations of motion of the system read

m(n)§(n) = Upyi(2(n+1) —q(n)) = Up(g(n) —q(n—1)), neZ. (11)

Here g(n) = q(t,n) is the coordinate of n-th particle at time ¢, m(n) is
the mass of that particle, and U, is the potential of interaction between
n-th and (n — 1)-th particles. We always assume that there are positive
constants mg and My such that

mo < m(n) < Mo

for every n € Z.
Equations (1.1) form an infinite system of ordinary differential equations
which is a Hamiltonian system with the Hamiltonian

g f: ”2(")+U((n+1) (n)) (1.2)
B = \2m(n) n\d am) ) )
where p(n) = m(n) ¢(n) is the momentum of n-th particle.

Formally this statement is readily verified. However, to make it precise

first one has to specify the phase space.

The simplest, but not so natural from the point of view of physics,
choice of the configuration space is the space [? of two-sided sequences!

1For the definitions and notations of spaces of sequences see Appendix A.1.
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g = {q(n) }nez. This corresponds to the boundary condition

lim ¢(n)=0 (1.3)

n—+oo

at infinity.
In this case the phase space is [? x {2 and Eq. (1.1) can be written as
the first-order system

= JVH(u),

_ (4 _ 07V, 2, 2072
i=(2). = (21) Pxrapnn

I is the identity operator and VH the functional gradient of H

where

() = [ Unla(n) —a(n 1)) = U, (a(n +1) - g(n))
v = ( p(n)/m(n) )
Denote by G the nonlinear operator defined by

G(g)(n) =U,(¢(n)), nez, (1.4)

where ¢ = {q(n)}, and consider operators of right and left differences
(@*q)(n) :=q(n+1) - q(n)

and
(079)(n) :=g(n) — q(n — 1),

respectively. We suppose that G is a “good” nonlinear operator in (2. Then

VH(u) = (”6;(/;7(:’_'1)) , (1.5)

while Eq. (1.1) becomes a “divergence form” equation
mg = 0tG(87q). (1.6)
Note that 8% and 8~ are bounded linear operators in 12 and
(%) =-0-.
Another form of Eq. (1.6) is
m§ =90-G*(9%q), (1.7)
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where

G*(9)(n) = Upy1(a(n)). (1.8)

However, more natural and most important choice of configuration space
is the space X = [ that consists of two-sided sequences g = {q(n)}nez such
that 01q € (2. Endowed with the norm

1/2 ) 1/2
lallx = (8% qllf +1a(0)I*) " = (0~ qllfz +1a(0)[*) ™~
X is a Hilbert space. Obviously,
10~ glliz = [10% qllz=.

Operators 8% and 0~ are linear bounded operators from the space X onto
{2 and have one dimensional kernel that consists of constant sequences.

Equation (1.1) (equivalently, (1.6)) is a Hamiltonian system on the phase
space 12 x [2. In this case the corresponding symplectic form [Marsden and
Ratiu (1994)] is degenerate. Nevertheless, the Hamiltonian H defined by
(1.2) is a conserved quantity provided H(q,p) is C! on 12 x 2. This can be
verified by a direct calculation.

Now we introduce a reformulation of Eq. (1.6) in 12 as an equation in
[2. Denote by

r(n) :==q(n+1) —q(n),
i. e. 7 = 0%q, the relative displacements of adjacent lattice sites and set
b(n) := a(n — 1) = m(n)~ /2,
Then Eq. (1.1) gives immediately
(n) = a*(n) [V (r(n + 1)) = Up (r(w) ]
—a?(n-D[Ua(r() ~Upoy(r(n=1)]- (19)
Note that r € I2 whenever q € 2. In operator form, Eq.(1.9) reads
F=0" [a23+G(r)].
Also it can be written as (see Appendix D, Eq. (D.5))
#=0%[b?0~G*(r)], (1.10)
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where
G*(r)(n) = Uj 14 (r(n)).

Equation (1.10) is equivalent to the following first-order system

i=F(u), u= (Z) F(u) = (bgfg’fgr)). (1.11)

This is a Hamiltonian system

o= JVH ), (1.12)
whege
J= (-boa— 6;*’) (1.13)
and
Hirs)= 3 [%”)2 + U,H.l(r(n))] . (1.14)

In fact, here s = bp = p/m1/2. The phase space of this system is 12 x [2. It
is readily verified that

(B1b)* = —bo~.

Certainly, H(r,s) defined by (1.14) is a conserved quantity if H is C! on
12 x 12,

Now let us discuss the relation between solutions of Eq. (1.6) and
Eq. (1.10) (or (1.11)). Consider a solution g = q(t,n) of Eq. (1.6) such
that ¢ is a C' function of ¢ with values in X = 22 and q is a C! function
with values in /2. Then r = §+q and s = ap are C! functions with values
in? and u = (r,s) obviously solves (1.11). Moreover, the well-posedness,
local or global in time, of the Cauchy problem for Eq. (1.6) in 12 x {2 implies
the same property for Eq. (1.11) (and (1.10)) in the space [2 x [2.

Conversely, consider the Cauchy problem for (1.6), with

qlt=0 = q(o) € P» qGlt=0 = (I(l) €2
Set

r® = 5+q@ O _ 172,01



