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Preface

Since the classic work on inequalities by HArRDY, LITTLEWOOD, and
P6LyA in 1934, an enormous amount of effort has been devoted to the
sharpening and extension of the classical inequalities, to the discovery
of new types of inequalitics, and to the application of inqualities in many
parts of analysis. As examples, let us cite the fields of ordinary and
partial differential equations, which are dominated by inequalities and.
variational principles involving functions and their derivatives; the
many applications of linear inequalities to game theory and mathe-
matical economics, which have triggered a renewed interest in con-
vexity and moment-space theory; and the growing uses of digital com-
puters, which have given impetus to a systematic study of error esti-
mates involving much sophisticated matrix theory and operator theory.

The results presented in the following pages reflect to some extent
these ramifications of inequalities into contiguous regions of analysis,
but to a greater extent our concern is with inequalities in their native
habitat. Since it is clearly impossible to give a connected account of the
burst of analytic activity of the last twenty-five years centering about
inequalities, we have decided to limit our attention to those topics that
have particularly delighted and intrigued us, and to the study of which
we have contributed. ‘

We have tried to furnish a sufficient number of references to allow
the reader to pursue a subject backward in time or forward in com-
plexity, but we have made no attempt to be encyclopedic in covering
a field either in the text or in the bibliography at the end of the separate
chapters.

As with most authors, we have imposed upon our friends. To Ky FAN
we extend our sincere gratitude for reading the manuscript through
several times and for furnishing us the most detailed suggestions. For
the reading of individual chapters and for many valuable comments and
references, we wish to thank R.P.Boas, P. LAX, L. NIRENBERG, I.
OLKIN, and O. TAUSSKY.

Our hope is that the reading of this book will furnish as much pleasure
to others as the writing did to us.

Los Angeles and Santa Monica, 1961
EpwiN F. BECKENBACH
RICHARD BELLMAN
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Chapter 1

The Fundamental Inequalities and Related Matters

§ 1. Introduction

In this initial chapter, we shall present many of the fundamental
results and techniques of the theory of inequalities. Some of the results
are important in themselves, and some are required for use in subsequent
chapters; others are included, as are multiple proofs, on the basis of
their elegance and unusual flavor [1].

We shall begin with the Cauchy inequality and the Lagrange identity,
both of which will be substantially extended in this and the following
chapter. From this we turn to a topic to which a monograph could be
devoted in itself — namely, the famous inequality connecting the
arithmetic and geometric means of # nonnegative numbers. Twelve
proofs will be given of this basic result; not to suggest any lack of con-
fidence in any single proof but rather to illustrate the wide range of
techniques that the algebraist and analyst have at their disposal in
treating inequalities. Of particular interest are the proofs of Caucny,
HurwiTtz, and BoHR.

Leaving this topic, albeit reluctantly, we shall establish the work-
horses of analysis, the inequalities of HOLDER and MINKOWSKI, in both
discrete and continuous versions.

Subsequently, we shall establish some related, but more complex,
results of BECKENBACH and DRESHER. These will be obtained with the
aid of the important technique of quasi linearization, a method initiated
by Minkowski, developed by MAHLER, and used by YOUNG, ZYGMUND,
and BELLMAN.

From this, we jump to the transformations of SCHUR involving
doubly stochastic matrices, and to some results of KARAMATA, OSTROW-
ski, and Harpy, L1TTLEwWoOD, and POLYA, pertaining to majorizing
sequences. Continuous versions due to FAN and LORENTZ are also
mentioned.

Our next port of call is in the domain of the elementary symmetric
functions. Here, the results of MARCUs and LoPES are considerably more
difficult to establish than might be suspected. Perhaps the most elegant
proof of their inequalities is one that rests on the Minkowski theory of
mixed volumes, a theory we shall discuss at length in our second volume
on inequalities. Results due to WHITELEY are also presented.
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1. The Fundamental Inequalities and Related Matters

From these matters, we turn to the fascinating questions of converses
and refinements of the classical inequalities. Rather than follow the
methods of BLASCHKE and Pick, and of BUCKNER, or use moment-space
arguments (the principal content of Chapter 3), we shall employ a
method based on differential equations due to BELLMAN for establishing
converse results. As far as the refinements are concerned, we shall merely
mention some results and refer the reader to the original sources.

The last part of the chapter is devoted to some inequalities involving
terms with alternating signs, discussed by WEINBERGER, SzEGO, OLKIN,
BELLMAN, and others, all of which turn out to be particular cases of a
novel inequality of STEFFENSEN.

§ 2. The Cauchy Inequality

The most basic inequality is the one stating that the square of any
real number is nonnegative. To make effective use of this statement,
we choose as our real number the quantity y,— y,, where y, and y, are
real. Then the inequality (y,— ¥,)2= 0 yields, upon multiplying out,

i+ 5% 2 2519 (1)

The sign of equality holds if and only if y;= y,. This is the simplest

version of the inequality connecting the arithmetic and geometric means;

following CAucHY, we shall subsequently base one proof of the full
result on this.

To make more effective use of the nonnegativity of squares, we form

the sum
”

2 (xu + yv)i= Y xP4 2uv 3y + 02 3 yE, (@)

=] t=1 =1 =1
where all quantities involved are real.

Since the foregoing quadratic form in # and v is nonnegative for all
real values of # and v, its discriminant must be nonnegative, a fact
expressed by the Cauchy inequality [1]:

” 2 n ”
(Z20) s (Z#)(25)- @

1= 1= =
This inequality may be considered as expressing the result that, in
euclidean space of any number of dimensions, the cosine of an angle is
less than or equal to 1 in absolute value. Equality holds if and only if

the sets (x;) and (y,) are proportional, that is, if and only if there are
numbers 4 and g, not both 0, such that

Ax‘+”yi= > .=1,2,...,n.

Still more general results can be obtained by applying the foregoing
argument not merely to an n-dimensional euclidean space, but to a



§ 4. The Arithmetic-mean — Geometric-mean Inequality .

general linear space S possessing an inner product for any two elements x
and y, written (x, y), with the following properties:
(@) (%, x) = Oforeach x¢S,

(b) (x5 = %), 4)
(€) (x, uy+ vw)=u(x, y) + v(x, w) for all real
scalars # and v.

These properties enable us to conclude that the quadratic form in # and »,
(2 + vy, ux + vy) = u(%, ) + 2uv (%, 3) + v2(y, 9) , (5)
is nonnegative for all real » and v.
Hence, as above, we obtain the inequality
(*3)= (% %) (5 9), (6)
a result that is, in turn, a particular case of more general results we shall
derive in Chapter 2; see § 2.6.
A large number of results may now be obtained in a routine way by
a choice of S and the inner product (x, ¥). Thus, we may take

b
(x,3) = [x(t)y(t) aG (), 7)

a Riemann-Stieltjes integral with G (f) nondecreasing for a < ¢t < b, or

(2, 9) = Zn: @i %:Yis 8)

i, =1

where 4 = (a;,) is a positive definite matrix, and so on.

§ 3. The Lagrange Identity

A problem of much interest and difficulty with surprising ramifica-
tions is that of replacing any given valid inequality by an identity that
makes the inequality obvious. The inequality (2.3) can be derived
immediately from the identity

( b x?) ( f y?) o ( é x«y.-)z = f’l(xfy;— x,yi)‘é- (1)

=1 i=1 L
i i

This also is a special case of a more general identity discussed in § 6 of
Chapter 2.

§ 4. The Arithmetic-mean — Geometric-mean Inequality

We shall begin our consideration of results less on the surface by
discussing what is probably the most important inequality, and certainly
a keystone of the theory of inequalities — namely, the arithmetic-mean —
geometric-mean inequality. The result, of singular elegance, follows:



4 1. The Fundamental Inequalities und Related Matters

Theorem 1. Let x; %,, ..., %, be a set of n monnegative quantities,
n=1. Then
Gt Bl T e

n

= (2% o S, (1)

There 1s strict inequality unless the x; are all equal.

Twelve proofs of this basic result will be presented in §§ 5—16, each
based on a different principle or at least using a different device. There
are a number of extensions of (1), involving weights. Amusingly enough,
they are actually particularizations of the inequality, together with
limiting cases. See § 14, below; a full discussion will be found also in [1.1].

§ 5. Induction — Forward and Backward
The following classical proof of Theorem 1 is due to CAucHY [2.1]. As
noted in (2.1), for any two quantities ¥, and y, we have
Y+ 9E= 209, (1)
Setting y? = x;, ¥ = x, in this last inequality, we obtain

XH‘A;Z’ 2 V% @

valid for any two nonnegative quantities x, and x,. Referring to (2.1),
we see that equality holds if and only if x, = x,.

Now replace x, by the new variable (x,+ x5)/2, and x, by (%34 x,)/2.
Then (2), together with its repetition, yields

%1+ X+ %3+ %, > (71t #)) (3s+ 2 |
4 == 2 2

@)

2 [(%125) 1o (23%4) 1] = (%, %3 %3 %0)")".

Proceeding in this way, we readily see that we can establish the inequality
(4.1) for n=1,2,4. ..., and, generally, for » a power of 2. This is a
forward induction.

Let us now use backward induction. We shall show that if the in-
equality holds for #, then it holds for » — 1. In (4.1), replace x,, by the
value

= it At A (4)

n n__l »

n = 2, and leave the other x; unchanged. Then, from (4.1), we obtain
the inequality ‘

oo Ay 4 D DT e

n (5)

1 Rl e e n
_?,(xlx,...x,._,)-’-( e l) '




§ 6. Calculus and Lagrange Multipliers 5

or
fit xyt o+ A g (Ft Fat 4 Ay \n
WAoo 'z(x,x,...x,._l)"‘( . x'"*l a ‘) ’ (6)
Simplifying, we obtain

T a7 Y i :

(AR s Tt 2 (g ) e, (7)

the desired inequality.

Combining the result for powers of 2 with this last result, we have an
inductive proof of the theorem.

It is easy to see that the statement concerning strict inequality can
also be established inductively.

Another interesting inequality that can be established by forward
and backward induction is the following unpublished result due to
Ky Fan:

“If0<x;=12for1=1,2,...,n, then

I; % ﬁ (1 —=2)
=1 § t=1 (8)

n ” ” s ?
(z;;,) [2(1—x,)]
=1

i=1
with equality only if all the x; are equal.”

§ 6. Calculus and Lagrange Multipliers

Let us now approach the arithmetic-mean — geometric-mean in-
equality as a problem in calculus. We wish to minimize the function
%+ %+ + -+ + %, over all nonnegative x; satisfying the normalizing
condition

X%y Xy B (1)

Since the minimum clearly is not assumed at a boundary point, we can
utilize the Lagrange-multiplier approach to determine the local minima.
For the function

f (%, %0, ooy Xp) = X1 %5, .. Xn— A (X% + Xp+ < -+ %,), (2)
the variational equations
Of  mZaxy. .. % _ .
3}7——‘——7‘—-—~1_0, 1=12 ... 8, 3)
yield the result that x;= x,= -+ = x,. From this we readily see that
%= 1/n,i=1,2, ..., n, is the unique minimizing point, and thus we

obtain the inequality (4.1).



6 . " 1. The Fundamental Inequalities and Related Matters

§ 7. Functional Equations

Theorem 1 can also be established through the functional-equation
approach of dynamic programming [1]. We begin with the problem of
maximizing x, %,. . . x,, subject to the constraints

Xt X+ xp=a, ;= 0.

Denote this maximum value by f,(a), for n =1,2,..., and @ = 0.
In order to obtain a recurrence relationship connecting the functions
fa(a) and f,_,(a), we observe that once x, has been chosen, the problem
that remains is that of choosing x,, %,, . . ., %, subject to the constraints

XN+ Xt Xy g=a—2x,, %=0, (1)

so as to maximize the product x4, ... %, ,,
It follows that

fala) = mn Bnfur@—2,)], n=23,..., (2)
with f, (a) = a.
The change of variable x;=ay,; 7=1,2,...,n, enables us to
conclude that
fa(@) = avfu(1) . 3)
Using this functional form in (2), we see that
Jaa (1) (n — 1)1
Ja(1) “fn-l(l)[ ld (1 —y)"“] - . 4)

Since f; (1) = 1, it follows that f, (1) = 1/#", which is equivalent to (4.1).

§ 8. Concavity

Let us now present a proof of Theorem 1 by means of a geometric
argument [1, 2, 3, 4]. Consider the curve y = logx, shown in Fig. 1.
Differentiation shows that the curve is concave, so that the chord
joining any two of its points lies beneath the curve. Hence, for x,, %, >0,

log ( x,—lz- x.) > logxl-;- log x, , (1)

with strict inequality unless x; = x,.
This result is equivalent to



§ 9. Majorization — The Proof of BoHR e

The same reasoning shows (see page 17) that

X Xyt 4 ox, log x, + togx,+ - -+ 4- logx,
log( 1 2 . __)g 1 g :” g , (3)
for xy, x,, . .., x, > 0, and, generally, that
x4 Agxg+ o0+ Auxp Mlogx,+ A, logxy+ - -+ 4 A, logx,
DR RN NI R R A » W)

for any combination of values x;= 0, 4, > 0.

cZ‘/ tl‘] "'zz .Z‘; A

Fig. 1

This appears to be a stronger result than Theorem 1, but, as remarked
in § 4, it can actually be obtained from (4.1) by specializing the values
of the x; and employing a limiting process; see §§ 14 and 16, below.

§ 9. Majorization — The Proof of Bohr

An amusing proof of Theorem 1 is due to H. Bonr [1].
To begin with, let us introduce the conecept of majerization. Let f(y)
and g(y) be two formal power series,

f) = XYay gly)= 2 by, (1)

n=0 n=0

where @,, 8,,= 0 far n = 0.
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If a,= b, for n = 0, we write
f>e). @)

If fi(y) > & (y) and f3(y) > g2(y), then clearly £i(y) fo(¥)> &1 (¥) &2(%)-
Beginning with the obvious relationship :

£ (3)

for N=1,2,...,and x, ¥y = 0, we obtain

yé‘"x; L g )NynN
=1 > (%1%; (N[;:) y . (4)

Hence, comparing the coefficients of y»¥, we get

” nN
(c‘ f]x,) > (¥ %5 .. %)Y (5)
mN) = = ’
or
(.-f,") S [oM)! ]l/‘v (6)
Xy Xgo oo Xy - | (NS

for all positive integers N.
Since, as k& — oo, we have STIRLING’s formula,

kRl ~ ke ®)/ 20k, )
we see that
lim
N-+% (8)
From (6) and (8) we obtain Theorem 1. This is the only proof we shall
give that does not yield the condition under which the sign of equality
holds.

(»N)1 JUN
(N J =

§ 10. The Proof of Hurwitz

Let us now present an interesting proof due to Hurwirz [1]. This
result was published in 1891, six years before his famous paper on the
generation of invariants by integration over groups [2], and one may
see the germ of the later technique in his earlier analysis, which follows.

For the function f (x4, %,, . . ., %,,) of the » real variables x,, #,, ..., %,,
let us denote by Pf (x,, x,, . . ., x,) the sum of f over the n! quantities
that result from all possible #! permutations of the x;. Thus

Pap=(n— 1)l (sf + 23+ -+ 23),
Pxyxg. .. %=l %5, .. %,

(1)
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Consider the functions ¢,, 2= 1,2,...,2—1, obtained in the
following manner: _
$1 =P [(277— 237") (%— x9)],
$o= P [(x772— 237 (53— %) %],
1.5, = P [(x772— 2373%) (%,— %,) %a %], (2)

Pu1= P [(xy— %) (%— %) %3%, - . - %] .
We see that
¢y = Px}+ Pxp— Pxplx,— Px3lx,

—2Pxp—2Pxp1z,. )
Similarly,
Gy =2Pxplx,—2PxP2x,%,,
by =2Pxp3x,%,— 2P a3 2,2, %, , 4)

q'$,,_1 = 2P XXy s Byd— BP Xy Xy o« By s
Adding these results, we have
it dot by =2Px}—2Pxy %, ... %,, (5)
or, referring to (1),
xg+x’,‘-};---+x:__x1x2“ Xn 2n1 (prt ot -+ da) . (6)
It is easy to see that each of the functions ¢, (x) is nonnegative for
x;= 0, since

b = P [(277*— 237%) (%,— xz) "a Xy oo Xy )
= P [(#,— x,)* (xp71+ - xg~ Fl) XgXg ... Xpyq] -
Thus the difference appearing on the left-hand side of the identity (6)
is nonnegative, whence Theorem 1 follows. This is the only proof we
shall give that establishes the inequality (4.1) by means of an appro-
priate identity.

§ 11. A Proof of Ehlers
We shall prove Theorem 1 by showing that

Xy Xg...%,=1, 2,20,
implies that
X+ Xt X, = Nl

Assume that the result is valid for #, and let
Xy ¥y o EpXpsp =1

Let x; and %, be two of the x; with the property that x; = 1 and %, 1.



