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PREFACE

This book contains the proceedings of a conference that took
place from 15th to 19th June, 1980, at the White House, Isle of
Thorns, Chelwood Gate, England, which is a conference centre run by
the University of Sussex.

There are 36 articles in all. The Introduction provides a
background for non-specialists and places in context the 35 papers
submitted. An asterisk following an author's name in some multi-
authored papers indicates the presenter of the paper. At the back
of the book are a list of talks given for which there is no paper
and a list of participants.

We are indebted to the British Council for supporting some of
the participants and to the publishers John Wiley, McGraw Hill,
Oxford University Press, Pitman and Springer for supporting a book
exhibition.

Above all, we are profoundly grateful to Mrs. Jill Foster of
the University of Sussex for the excellent fyping of the camera-

ready copy from which this book was produced.

P.J.C.
J.W.P.H.
D.R.H.
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INTRODUCTION

One of the features of geometry, and of finite geometry in
particular, is the difficulty of giving a concise definition of
the subject. As well as the wide variety of structures that are
studied and techniques that are used, an important factor
contributing to this intractibility is the way in which different
parts of the subject link up with and influence one another.
This is part of the excitement of the subject for its practitioners,
but may be off-putting for outsiders who see a confused tangle
rather than an elegant network. The purpose of this introduction
is to attempt to trace some of the main threads of finite geometry,
and to locate the papers of this collection in the warp and weft
of its fabric.

The structure of’the subject militates against a linear
tour of its highlights; but, of course, there is no other way to
write an introduction! To simplify the task, we regard finite
projective geometries (Galois spaces) as the central concept.

Let n be a positive integer, and q a prime power; let
GF(q) denote the Galois field with q elements. The elements
of the n-dimensional projective geometry PG(n,q) or Sn,q
are the subspaces of an (n+1)-dimensional vector space V over
GF(q) ; each has a geometric dimension which is one less than its
vector space dimension. Thus the basic objects, the points, are
the 1-dimensional subspaces of V. It is common to identify an
arbitrary subspace with the set of points it contains.

We may loosely divide the study of finite projective
geometry into two parts, whose extensions and relations cover a
great part of combinatorics : characterisations, and the study

of subsets. We deal with these in turn.



Axioms for projective spaces are ''classical', and can be
found in Veblen and Young's '"Projective Geometry'. In terms of
points and lines, they may be stated as follows:

(1) any line has at least three points;

(ii) any two points lie on a unique line;

(iii) a transversal to two sides of a triangle meets the
third side also.
A subspace can be defined as a set of points containing the line
through any two of its points; and the dimension of the geometry
is the number of subspaces in a maximal chain (excluding the empty
set and the whole space).

The characterisation has a very important feature. Any
finite structure satisfying the axioms and having dimension at
least 3 is isomorphic to PG(n,q) for some n and q; but this
is not so for dimension 2. Here, projective planes not isomorphic
to the ''classical" PG(2,q) exist. They are charcterised by the
first two of the above axioms together with the requirement that
any two lines are concurrent. The planes PG(2,q) are called
Desarguesian, since they are characterised by the additional
requirement that the theorem of Desargues is valid.

A finite projective plane has an order n, with the
property that any line has n+1 points, and there are nZ+n+1
points altogether. The order of PG(2,q) is gq.

If a line of a projective plane and all its points are
deleted, the resulting structure is called an affine plane. Its
lines fall into parallel classes in such a way that Euclid's
parallel postulate holds. The projective plane can be reconstructed
from the affine plane by adjoining a '"point at infinity" to the
lines of each parallel class, the new points lying on a 'line at
infinity". In a similar way, the affine space AG(n,q) is
obtained from PG(n,q) by deleting a hyperplane (a subspace of
codimension 1) together with all the non-empty subspaces it
contains.

The study of finite projective and affine planes is of

enormous importance in finite geometry; much of Dembowski's



compendious "Finite Geometries" is devoted to this topic. The
principal tool has been the use of collineation groups, and the
interplay between groups and planes has provided a lot of
information. Four papers in the present collection, those by
Cohen et al., Foulser, Hering and Kallaher, develop this theme.

Prominent in such studies is the notion of a central
collineation, one which fixes all the lines through a point
(called its centre ). Such a collineation also has the property
that it fixes all the points on a line (called the axZs); it is
called an elation or a homology according as the centre lies
on the axis or not. If we choose the axis as line at infinity,
then elations and homologies are translations and dilatations
respectively of the affine plane, fixing every parallel class.

A typical example of the role of central collineations in

characterisation theorems is the following well-known result.
It is easy to see that, in a plane of order n, there are at most
n elations with given centre and axis. If every incident point
and line are centre and axis for n elations, then the plane is
necessarily Desarguesian.

Hering shows that, if an affine plane possesses central
collineations of certain types, then its full collineation group
has a unique minimal normal subgroup, which is a simple group.
Thus it is to be expected that the effect of recent work on the
classification of finite simple groups will be felt in this part
of geometry : we should examine the known simple groups to see
how they can act on planes. Both Hering and Kallaher take up
this theme.

In a projective plane, an involution ( a collineation of
order 2 ) which is not central is called a Baer Znvolution, and
has the property that its fixed points and lines form a subplane
whose order is the square root of the order of the plane (a Baer
subplane ). (In general, the order of a subplane of a projective
plane of order n cannot exceedy/n. However, there can be
affine subplanes of larger order : for example, both PG(2,4) and
PG(2,7) '"contain" AG(2,3). This situation is studied by Vedder.)



A feature of affine spaces is the existence of a group of
translations, acting trasitively on the points but fixing every
parallel class. The most important affine planes, the translation
planes (studied by Cohen et al., Foulser and Kallaher) have the
same property. Cohen, Ganley and Jha consider translation planes
admitting a collineation group fixing a subplane and acting trans-
itively on the parallel classes outside this subplane; Kallaher
deletes the transitivity condition but assumes that the group is
of known type; while Foulser takes the specific case where the
plane has order 81 but assumes only the existence of two collin-
eations of order 3 whose fixed point sets are overlapping Baer
subplanes.

Other classes of structures admitting translations are
considered by Jungnickel and Marchi. Among Jungnickel's
structures are the class-regular Hjelmslev planes, studied further
by Sane.

A large area of combinatorics, the theory of designs,
involves a generalisation of the first two axioms for projective
geometries. If t 1is a positive integer, a t-design consists
of a set of points equipped with a collection of proper subsets
called '"blocks'", the blocks having a constant size k, and any
t points lying in a non-zero constant number A of blocks.

If A =1, the design is called a Steiner system. Thus, the
subspaces of fixed dimension in a projective space are the blocks
of a 2-design; the lines form a Steiner system.

As yet, no non-trivial t-design with t 2 6 1is known; but
there are two remarkable 5-designs, both Steiner systems, having
12 and 24 points, which have been known since the 1930s. These
designs are connected with Mathieu's simple groups and Golay's
perfect error-correcting codes, and have been intensively studied;
yet this remarkable seam has further wealth to yield. Beth gives
a new construction and uniqueness proof for the first of them.

The design formed by the points and hyperplanes of PG(n,q)
has the property that the number of points and blocks are equal.
More generally, any 2-design with this property is called



symmetric. The symmetric designs are extremal with respect to
Fisher's inequality, which asserts that a 2-design has at least
as many blocks as points.

Biggs and Ito describe another situation in which extremal
configurations are often provided by symmetric designs. An
ordinary (undirected) regular graph with girth 6 and valency k
has at least 2(k2-k+1) vertices. Equality is attained if and
only if the graph can be constructed as follows: the vertices are
the points and lines of a projective plane of order k-1, two
vertices being adjacent exactly when they correspond to a point
and a line which are incident in the plane. A similar construction,
applied to a symmetric design with A >1, would yield a graph of
girth 4 ; yet this graph may have a A-fold covering graph whose
girth is 6. If such a covering graph exists, the number of its
vertices exceed the bound by just 2(A-1). Several examples
exist.

A recent approach to design theory has made use of error-
correcting codes. The setting for these is the set s of words
or n-tuples of elements from an alphabet S of q symbols.

The distance between two words is the number of coordinates in
which they differ. A code 1is simply a subset of s, If it is

to correct d errors, we must ensure that there is at most one
codeword distant d or less from any given word; the triangle
inequality shows that this will be achieved if the shortest distance
between two codewords is at least 2d+1.

An important special case is that where S 1is a finite field
GF(q), and the code C 1is lZnear (that is, a subspace of Sn).
In this case, the distance between two codewords is just the
weight of their difference (the number of non-zero coordinates).
Thus it is important to know the weight distribution of a code,
the number of codewords of each weight. The MacWilliams identities
show that the weight distribution of a code C determines that of
its dual code C* (with respect to the standard inner product on
Sn) . Using them, together with classical invariant theory,

Gleason found the general form of the weight distribution of a



self-dual code over GF(2). For details and generalisations, we
refer to the book "Error-correcting Codes'" by MacWilliams and
Sloane.

Given a design on v points, each block can be represented
by a v-tuple, having ones in the positions corresponding to the
points of the block and zeros elsewhere. The subspace spanned
by all such v- tuples over GF(q) (for some q) is a linear code.
Under suitable conditions, this code, or a modification of it, is
self-dual. Information about the weight distribution of the code
interacts with structural information about the design. Further-
more, the permutation representation of any automorphism group of
the design admits the code as an invariant subspace. Hall gives
a survey of the connection between codes and designs. Highlights
include the proof that a projective plane of order 10 (if any
exists) can possess no collineation of order 5, and the
construction of a new symmetric design on 41 points.

Two other papers also study planes of order 10. A k-are
in a projective plane is a set of k points no three of which are
collinear; a k-arc is complete if it is not contained in a larger
arc. Bruen relates the existence of a complete 6-arc to the exist-
ence of a set of complete 9-arcs and a set of complete 10-arcs in
a plane of order 10 . Coding theory methods enter into this paper,
and are central to the paper of Assmus and Novillo Sardi. By
considering the geometric configurations (on 16 or 20 points)
defined by codewords of weight 16 or 20, they are led to consider
a generalization of Steiner systems, in which blocks have 4 or 6
points and any 3 points lie in a unique block.

Finally in this area, Liebler turns his attention to
projective geometry codes, where the structures in question are
defined by subspaces of various dimensions in PG(3,q), and proves
a new inclusion relation among the codes, using the representation
theory of a suitable cyclic collineation group.

Tallini's paper is related in a different way to the problem
of characterising projective geometry. So far, we have considered

the points of a projective space as its basic objects. It is



possible to take the set of i- dimensional subspaces for any value
of i, and assign structure to it. (These sets are sometimes known
as Grassman manifolds.) The Grassman manifold whose 'points' are
the lines of projective space has certain subsets called "lines",

a Grassman "line" consisting of all the projective lines lying in

a plane and passing through a point. Tallini gives axioms charact-
erising this geometry.

We turn now to the other aspect of projective geometry, the
study of properties of subsets of the point set. This can be sub-
divided, somewhat arbitrarily, into two parts: the geometric
structure of a subset (for example, the configuration formed by
the lines it contains), and the cardinalities of the intersections
of lines (or other subspaces) with the subset.

Some of the most familiar subsets of projective spaces are
quadrics and Hermitian varieties (the sets of zeros of non-singular
quadratic or Hermitian forms). Each of these, equipped with the
subspaces it contains, forms a geometry known as a (classical)
polar space. Further polar spaces are defined by non-singular
alternating bilinear forms: in this case the points of the polar
space are all the points of the projective space, but only those
subspaces which are totally isotropic (that is, on which the form
is identically zero) belong to the polar space. These polar spaces
are sometimes known by the same names as the classical groups
associated with them, namely orthogonal, unitary and symplectic.

Classical polar spaces are given to us embedded in projective
spaces. One may ask, supposing the polar spaces known, just how
can they be embedded in projective spaces? Lef&vre-Percsy in her
paper, surveys results on this question, and proves some new ones.

The problem of axiomatising polar spaces was solved by Tits
in 1974, in his lecture notes on '"Buildings of Spherical Type and
Finite BN-Pairs'". Tits defines an (abstract) polar space of
rank n to be a set equipped with a collection of distinguished
subsets called subspaces, having the following properties:

1. Any subspace, together with the subspaces it contains,

is a projective space of dimension at most n-1.



2 Any intersection of subspaces is a subspace.

3. If M is an (n-1)-dimensional subspace and x a
point, then the union of the set of lines joining
x to points of M is an (n-1)-dimensional subspace.

4. There exist two disjoint (n-1)-dimensional subspaces.

(Tits uses the term '"projective space' in a more general
sense than the one we have defined. 1In place of our axiom 1, it
is required only that each line contains at least two points.
However, it is straightforward to show that the point set of such
a generalised projective space is a disjoint union of point sets
of restricted projective spaces, the lines being all those of the
constituent spaces together with all pairs of points in different
constituents.)

The result of Tits relevant to us is that a finite abstract
polar space of rank at least 3, in which all lines have at least
three points, is a classical polar space of one of the types
described earlier.

Subsequently, Buekenhout and Shult gave a simpler axiom

scheme, involving only the points and lines. Their axioms were as

follows:
1. Any line has at least three points.
2. If a point x is not incident with a line L, then
x 1is collinear with one or all points of L.
3 There exists a line; and no point is collinear with

all others.

They showed that, starting from these hypotheses, it is
possible to reconstruct all the subspaces and verify Tits' axioms.
It should be noticed that, as in the axiomatisation of
projective spaces, the theorem only applies provided the dimension
is sufficiently large: polar spaces of rank 2 are not covered by
Tits' theorem. For these, the maximal subspaces are lines, and a
stronger version of Buekenhout and Shult's second axiom holds: if

X 1is not incident with L, then x is collinear with just one
point of L. Such a geometry is called a generalised quadrangle.

Thus, generalised quadrangles stand in the same relation to polar



spaces as projective planes do to projective spaces. It might
then be expected that the theory of generalised quadrangles would
parallel that of projective planes, with the place of PG(2,q)
being taken by the classical quadrangles (the classical polar
spaces of rank 2 ). This is indeed the case. A number of
characterisations of classical quadrangles by configuration
theorems as properties of automorphism groups have been given.

One of the most important of these is Tits' theorem on
Moufang quadrangles. These are quadrangles admitting sufficiently
many ''root automorphisms' (analogous to central collineations of
projective planes), and Tits has shown, in particular, that finite
Moufang quadrangles are classical. (This should be seen as the
analogue of the characterisation of Desarguesian projective planes
mentioned earlier.) Payne and Thas, in their paper in this volume,
give an alternative, more elementary, approach to this important
theorem. The basic idea is to establish relations between root
automorphisms and structural properties, similar to the well-known
relation between central collineations and Desargues' theorem for
planes.

These classes of geometries have been generalised further.
It is possible to define generalised n-gons for any n = 2. The
precise definition does not concern us here; it suffices to say
that projective planes are generalised 3-gons, and just as we
saw that a projective plane gives rise to an extremal graph of
girth 6, so a generalised n-gon gives an extremal graph of girth
2n . Generalised polygons are the objects from which buildings
are constructed, in much the same way as polytopes (or Coxeter
complexes) are built from ordinary polygons. The class of
buildings includes projective and polar spaces. Buildings are
associated with the finite simple groups of ''Lie type'.

A more general class of diagram geometries has been defined
by Buekenhout. He allows a wider class of '"building blocks', and
a more general "construction method'". As a result, he finds
geometries associated with many of the recently-discovered

"sporadic' simple groups. A diagram geometry (in Buekenhout's



sense) which is built from generalised polygons is called a

Tits geometry by Ott and Ronan, who continue the programme
(initiated by Tits) of studying such geometries. Much of this
study has a topological flavour. Any ''geometry'" which consists of
subspaces of various dimensions or 'types' can be described as a
simplicial complex, where a simplex is a flag or set of mutually
incident subspaces. (Our graph of girth 6 constructed from a
projective plane earlier is an example.) Ott and Ronan study

the universal covers of Tits geometries, showing that under certain
conditions they are necessarily buildings. Ronan examines similar
problems of universal covers for some sporadic Buekenhout geometries.

Another method, that of Hecke algebras or incidence algebras,
underlies the celebrated result of Feit and Higman : this asserts
that a finite generalised n-gon with s+ 1 points on each line
and t+1 1lines through each point (s, t > 1) can exist only if
n=2,3,4, 6 or 8. Ott extends this method to wider classes of
diagram geometries.

The article by Hall and Shult may be fitted loosely into
this framework. Consider a polar space with three points on every
line. (Such a space is necessarily of symplectic or orthogonal
type over GF(2) : there are no non-classical quadrangles with
s=2.) Form a graph, whose vertices are the points of the polar
space, two vertices adjacent whenever they are collinear.

Examining the Buekenhout-Shult axioms, we see that such graphs
are characterised by the following triangle property :

(*) any edge xy 1lies in a triangle xyz having the

property that any further vertex is joined to one or

all of x, y and z;
together with the nondegeneracy conditions that there is at least
one edge and that no vertex is joined to all others. Indeed, this
characterisation, given by Shult and Seidel, preceded and motivated
the Buekenhout-Shult theorem. The same authors considered a
variation, the cotriangle property, obtained from (x) by
replacing "edge'" and 'triangle' by ''non-edge' and "cotriangle"

(a cotriangle being a set of three pairwise nonadjacent vertices).

10



