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Preface

The school that was held at the Ettore Majorana Foundation and Center for
Scientific Culture {(EMFCSC), Erice (Sicily), in July 2005, aimed to provide an
up-to-date overview of almost all technical advances of computer simulation in
statistical mechanics, giving a fair glimpse of the domains of interesting appli-
cations. Full details on the school programme and participants, plus some ad-
ditional material, are available at its Web site, http://cscm2005. unimore. it

Computer simulation is now a very well established and active field, and
" its applications are far too numerous and widespread to be covered in a single
school lasting less than 2 weeks. Thus, a selection of topics was required, and
it was decided to focus on perspectives in the celebration of the 65th birthday
of Mike Klein, whose research has significantly pushed forward the frontiers
of computer simulation applications in a broad range, from materials science
to chemical biology. Prof. M. L. Klein (Dept. Chem., Univ. Pennsylvania,
Philadelphia, USA) is internationally recognized as a pioneer in this field; he
is the winner of both the prestigious Aneesur Rahman Prize for Computa-
tional Physics awarded by the American Physical Society, and its European
counterpart, the Berni J. Alder CECAM Prize, given jointly with the Euro-
pean Physical Society. The festive session held on July 23rd, 2005, highlighting
these achievements, has been a particular focus in this school. In the frame-
work of the EMFCSC International School of Solid State Physics Series, the
present school was the 34th course of its kind.

However, this school can be considered as being the third (and perhaps
last?) event in a series of comprehensive schools on computer simulation, 10
years after the COMO Euroconference on “Monte Carlo and Molecular Dy-
namics of Condensed Matter systems,” and 20 years after the VARENNA
Enrico Fermi Summer School on “Molecular Dynamics of Statistical Mechan-
ical Systems.” Comparing the topics emphasized upon in these schools, both
the progress in achieving pioneering applications to problems of increasing
complexity, and the impressive number of new methodological developments
are evident. While the focus of the Varenna School was mostly on Molecular
Dynamics (MD) and its applications from simple to complex fluids, the Como
school included both Monte Carlo (MC) simulations of lattice systems (from
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quantum problems to the advanced analysis of critical phenomena in classi-
cal systems like the simple Ising model), and the density functional theory
of electronic structure up to the Car-Parrinello ab initio Molecular Dynamics
techniques (CPMD). At the Erice school, a new focus was put on the para-
digma of “Multiscale Simulation”. i.e. the idea to combine different methods
of simulation on different scales of length and time in a coherent fashion. This
method allow us to clarify the properties of complex materials or biosystems
where a single technique (like CPMD or MD or MC etc.) due to excessive needs
of computer resources is bound to fail. Good examples presented at this school
for such multiscale simulation approaches included MD studies of polymers
coupled with a solvent, which is described only in a coarse-grained fashion by
the lattice Boltzmann technique and hybrid quantum mechanical/molecular
mechanics (QM/MM) methods for CPMD simulations of biomolecules, etc.

As a second “leitmotif,” emphasis has been put on rapidly emerging novel
simulation techniques. Techniques that have been dealt with at this school in-
clude the methods of “transition path sampling” (i.e. a Monte Carlo sampling
not intending to clarify the properties of a state in the space of thermodynamic
variables, but the properties of the dominating paths that lead “in the course
of a transition” from one stable state to another), density of state methods
(like Wang-Landau sampling and multicanonical Monte Carlo, allowing an
elegant assessment of free energy differences and free energy barriers, etc.)
and so on. These techniques promise substantial progress with famous “grand
challenge problems” like the kinetics of protein folding, as well as with classi-
cal ubiquitous problems like the theory of nucleation phenomena. Other sub-
jects where significant progress in methodological aspects was made included
cluster algorithms for off-lattice systems, evolutionary design in biomedical
physics, construction of coarse-grained models describing the self-assembly
and properties of lipid layers or of liquid crystals under confinement and/or
shear, glass simulations, novel approaches to quantum chemistry. formulation
of models to correctly describe the essence of dry friction and lubrication,
rare event sampling, quantum Monte Carlo methods. etc. The diversity of
this list vividly illustrates the breadth and impact that simulation methods
have today.

While the most simple MC and MD methods have been invented about 50
vears ago (the celebration of the 50th anniversary of the Metropolis algorithm
was held in 2003, the 50th anniversary of the Alder-Wainwright spectacular
first discovery by MD of the (then unexpected) phase transition in the hard
sphere fluid is due in 2007), even the “second generation” of scientists, who
started out 30-40 years ago as “simulators” are now already the “old horses”
of the field, either close to the end of their scientific career, or, in the best
case, near it. Thus, we can clearly observe that the task of developing the
computer simulation methodology is further taken over with vigor by the
“third generation” of well-established younger scientists who have emerged in
the field. Because two of the organizers of the school (KB, GC) do belong to
the “old horse” category, it was clearly necessary to get an energetic younger
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co-organizer involved (MF), and we also felt it was the appropriate time that
the most senior experts need not give the main lectures of the school, but
rather the younger generation who are now most actively driving forward
the frontier of research. Of course, it was crucial to involve the very valuable
experience and knowledge of our senior colleagues into the school as well,
and we are very glad that so many of them have accepted our invitation to
give one-hour seminars providing tutorial introductions to various advanced
research topics, which is at the heart of the research interests of the speakers.
In this way, it was possible to produce an exciting event on the forefront of
research on computer simulation in condensed matter, in a very stimulating
and interactive atmosphere, with plenty of fruitful discussions.

It is with great pleasure that we end this preface with several acknowl-
edgments. This school, of which the lecture notes are collected here, could
not have taken place without the generous support of the European Commu-
nity under the Marie Curie Conference and Training Courses, Contract No.
MSCF-CT-2003-503840. We are grateful to the coordinators of this program,
Michel Mareschal and Berend Smit, for their help in securing this support.
We also wish to thank the CECAM secretaries, Emmanuelle Crespeau and
Emilie Bernard.

We thank the Ettore Majorana Foundation and Centre for Scientific Cul-
ture in Erice, Sicily, for providing their excellent facilities to hold this school,
~and also Giorgio Benedek, Director of the International School of Solid State
Physics, for the opportunity to hold our school as its 34th course: for his enthu-
siastic support during the school, and for his personal scientific participation.
We are particularly grateful to him for providing the beautiful facilities of
Erice.

MF thanks Davide Calanca, INFM-S3, Modena, for his valuable help in
setting up the Web site of the school.

We thank the director of the physics department of the University of Rome
“La Sapienza”, Guido Martinelli, and the Administrative Secretary of the De-
partment, Mrs. Maria Vittoria Marchet and her assistant, Mrs. Maria Proi-
etto, for helping us in the difficult duty of managing all the financial matters.
Mrs. Fernanda Lupinacci deserves grateful appreciation for her devoted and
untiring presence and skillful help in overcoming all practical difficulties re-
lated to the organizational needs, and for providing a hospitable atmosphere
to all the participants.

We are very grateful to Daan Frenkel, Mike Klein, and Peter Nielaba for
their very valuable input when setting up the scientific program of the school,
to all the lecturers, for their willingness to engage in the endeavor, and to all
the participants, for their engagement and enthusiasm.

May 2006 Mauro Ferrario
Giovanni Ciccotti
Kurt Binder
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2 G. Ciccotti et al.

The basic laws of physics that govern the phenomena on the scales of
length and energy relevant for condensed matter systems, ranging from simple
fluids and solids to complex multicomponent materials and even problems of
chemical biology, are well known and understood: one just deals with the
Schrodinger equation for the quantum many-body problem of the nuclei and
electrons interacting with Coulomb potentials (for simplicity, we disregard,
here throughout, the need for relativistic corrections in electronic structure
calculations of matter containing heavy atoms). Statistical mechanics then
supplies the framework to extend this quantum many-body theory to provide
a statistical description in terms of averages taken at nonzero temperature.,

However, it is also well-known that one cannot carry out this program with
any mathematical rigor. Even the problem of one nucleus (or a few nuclei)
with the associated electrons is still a challenge for the methods of quantum
chemistry. Dealing with the quantum-many-body problem in terms of approx-
imations such as the Hartree-Fock method, which tries effectively to reduce
the many-body problem to a single electron problem, introduces errors that at
least for excited states, cannot be controlled. Similarly, statistical mechanics,
as founded by Boltzmann, Maxwell, Gibbs and others more than one-hundred
years ago, can only make analytically precise predictions for problems of a
type where the many-body problem can be reduced to a system of indepen-
dent particles or quasiparticles. Such problems are, for instance, the ideal gas,
the ideal paramagnet, or the multidimensional harmonic oscillator describing
phonons in perfectly harmonic crystals. Of course, these problems are useful
and nicely illustrate the spirit of the general theoretical framework and hence,
we all teach them to our students. But we should not fail to admit that the
predictive power that emerges from these few problems is very scarce. One has
to be very careful about concluding anything about the problems of real mat-
ter as it occurs in nature or in the experimentalist’s laboratory. For instance,
in gases and paramagnets the degrees of freedom comsidered almost never do
not interact at all; real solids show thermal expansion and finite lifetime of
the phonon excitations, unlike strictly harmonic crystals; etc.

It is true that one can try to account for those neglected interactions ei-
ther by systematic expansions, e.g. dealing with anharmonic terms in crystals
via perturbative methods, or by closed-form approximations, e.g. exchange
interactions among the magnetic moments in a crystal may be treated within
molecular field theory. But the parameter range over which the systematic
expansions are accurate is often doubtful; carrying them to high enough order
often requires extremely heavy use of very sophisticated computer programs,
which typically give relatively little reward in the form of physical insight.
A characteristic example is the study of critical phenomena in systems of
interacting spins with the high temperature series expansion method. This
method indeed can give very good estimates for critical exponents at second
order transitions, but still may suffer from the problem that the answers gotten
are misleading: if the model system studied exhibits a phase transition that is
weakly of first order, rather than second order, it has no critical exponents at
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all. In addition, it is hard to improve such methods systematically by going to
still higher order, since the effort then typically increases exponentially fast.

The situation with closed-form approximations is even worse, since these
are typically uncontrolled in a mathematical sense and often lead to very
bad and misleading results. Although the simplest of these approximations
are standard material of university courses in statistical thermodynamics. one
must not sweep under the rug that approximations such as the molecular field
theory of magnetism erroneously predict long range order in a one-dimensional
chain although there is none; the van der Waals theory of the liquid-gas transi-
tion produces isotherms with spurious loops, and none of these approximations
can describe the critical behavior near second order phase transitions correctly.
The reason of these shortcomings is that nontrivial correlations between the
degrees of freedom of the many-body system arise. These correlations cannot
be dealt with appropriately by these approximations. which always involve un-
justifiable factorization of such correlations in one way or another. For more
complicated problems, even such a mean-field like factorization requires very
heavy and technically demanding computer use. For instance when one deals
with quantum-many-bhody problems by Hartree-Fock techniques and their ex-
tensions, or when one deals with the glass transition of supercooled fluids by
the mode-coupling theory beyond schematic models, cumbersome numerics is
required. In such cases it is particularly difficult to justify which steps of the

_approximate theoretical treatment are accurate. Often direct comparison to
experiment may be misleading, too, since the simplified model on which the
theory is based does not correspond to a real system in sufficient detail. Hence
discrepancies between “analytical theory” and experiment can be attributed
to the choice of an inappropriate model, an inappropriate approximation, or
both. Conversely, sometimes agreement between experiment and theory is
claimed which is completely spurious because inadequacies of a model some-
how are effectively more or less compensated by wrong approximations. An
example of such spurious agreement are fits of the Flory-Huggins equation of
state to phase diagrams of polymer mixtures.

A long list of theories to which these criticisms apply could be compiled.
notwithstanding the fact that there are some special models. for instance.
lattice models like the one- and two-dimensional Ising and Potts models with
nearest neighbor interactions, which can be solved exactly by analytical meth-
ods. While one has certainly learned a lot of physics from the results of these
exceptional nontrivial models that were exactly soluble, usually the method
of solution is fairly special — if not tricky — and not illuminating the physics of
the problem. And, in addition, the overwhelming majority of problems that
one encounters in the physics of condensed matter does not fall in this cate-
gory of solvable problems. While very respectable research on mathematical
statistical mechanics is still going on, it is not likely that it will change this
situation.

Hence, until about 50 years ago, condensed matter theory was in a
very unsatisfactory status: although a formal framework for the theoretical



