

INTRODUCTION TO
STRUCTURED

PROGRAMMING
USING BASIC

Coleman Barnett
Tarrant County Junior College

Gorsuch Scarisbrick Publishers
Dubuque, lowa 52001

Gorsuch Scarisbrick Publishers
576 Central
Dubuque, IA 52001

10987654321

ISBN 0-89787-402-1

Copyright © 1984 by Gorsuch Scarisbrick Publishers
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic,
mechanical, photocopy, recording or otherwise,
without the prior written permission of Gorsuch

Scarisbrick Publishers.

Printed in the United States of America

Preface

The overwhelming growth in the use of computers in our society has cre-
ated an increasing need for skilled computer programmers. As the complexity
of the field increases, the need is especially great for programmers well-versed
in the concepts and techniques common to all programming languages rather
than in the techniques utilized by any single language. Learning a specific
programming language does not necessarily ensure learning how to prepare
good computer programs.

This text is designed to help students learn how to write structured com-
puter programs. Emphasis is placed on learning the concepts and techniques
of algorithm development that form the basis for writing good structured pro-
grams. The reader will then be able to transfer this knowledge into program-
ming languages and environments that require structured techniques. BA-
SIC has been chosen to demonstrate the programming applications of these
concepts because of its widespread use, its use in programming classes, and
its relatively easier syntax and semantics.

The text follows a parallel chapter organization through many of the
chapters in order to demonstrate and reinforce the concepts and techniques to
be learned. Algorithm development in both flowchart and pseudocode form
are shown in a given chapter. The corresponding BASIC language program
development for these algorithms is in the following chapter. This allows the
student to become familiar with the algorithm development independent of
programming language concerns. The following chapter then demonstrates
the BASIC language requirements for the implementation of the algorithms.

The early chapters are introductory chapters on problem solving, the na-
ture of an algorithm, and computer and data organization. Chapters 4 and 5
are parallel chapters on getting started, with the former covering in some de-
tail the techniques of flowcharting and pseudocode, and the latter covering
program development in general and BASIC programming specifically. Chap-
ters 6 and 7 develop in a nonstructured approach the-logic of sequence, loops,
and selection. Parallel chapters 8 and 9 place the logic structures learned in
chapters 6 and 7 in a structured programming framework. This allows the stu-
dent to put in perspective the differences between structured and nonstruc-
tured programming. Chapter 10 introduces automatic loop control (FOR/
NEXT). Next, the parallel chapters 11 and 12 present the use of one-dimen-
sional arrays in processing. Included is the use of arrays for sorting and index-
ing. As an extension of these chapters, chapter 13 then discusses nested loops
and two-dimensional arrays. The next two chapters are parallel chapters that
develop sequential file processing. They are followed by chapters on format-
ting output using TAB and USING with PRINT, suggestions on debugging,
and number and coding systems. These three chapters are treated indepen-
dently and can be studied at any point in the course.

The text develops structured programming concepts and techniques us-
ing common BASIC statements. The solutions to problems in the chapters
are explained step by step. Also, the problem solutions in the chapters include
walkthroughs that show the results of running data through the algorithms

xiii

xiv /| Preface

step by step in the flowcharts and pseudocode and line by line in the computer
programs. Each chapter closes with a short summary, a list of key terms, and
several review questions designed to help students test their learning. In ad-
dition, the exercises at the end of each chapter contain problems that are
simpler than chapter examples, problems with the same degree of difficulty,
and problems that are more difficult than chapter examples. This enables stu-
dents to check their ability to apply the concepts and techniques learned in
each chapter.

I appreciate the efforts of many people in developing this book—in particu-
lar the following reviewers: Mike Michaelson, Associate Professor, Computer
Information Systems Department, Palomar College; Leona Roen, Associate
Professor, Data Processing Department, Oakton Community College; and
Michael Walton, Associate Professor, Business Data Processing Department,
Miami Dade Community College, North Campus. Their comments and sug-
gestions were especially helpful in producing a complete and accurate text.

Coleman Barnett

Contents

Preface xidi

1 Problem Solving 1

What Is a Problem? 1

Problem Solving: An Acquired
Skill 1

Computer-Related Problems 2

Repetitive 2
Numerical 2
Definable 2

What Is Data Processing? 2
Steps in Problem Solving 3
Summary 6

Terms 6

Review Questions 6

Exercises 7

2 Algorithms 9

Definition of an Algorithm 9

Characteristics of an Algorithm 9
Precision 9

Finiteness 9

Effectiveness 9

Input 10

Output 10

The Terminology of Algorithms 10
Input, Process, and Qutput 10
Variable 10
Assignment 11
Expression 11
Statement 13

The Development of an
Algorithm 13
The Flowchart as an Algorithm 14
The Pseudocode as an Algorithm 15
The Computer Program as an
Aigorithm 15

Summary 16
Terms 16
Review Questions 16

Exercises 16

3 Computer and Data
Organization 17

Computer Units 17
The Computer System 17
Memory 19
Control 19
Arithmetic/Logic 19
Computer Units versus Steps in
Algorithms 20

Data Recording Media and
Devices 20
The Data Hierarchy 20
Magnetic Tape 21
Video Display/Keyboard 22
Printer 23

Summary 23
Terms 25
Review Questions 25

Exercises 25

4 Algorithm Development:
Getting Started 27

Flowcharts 27
Symbols and Flowchart
Structures 27
The Computer’s Thinking Ability 35
Flowcharting Guidelines 37
Other Useful information on
Flowcharting 42

vii

viii / Contents

Pseudocode 43
Analysis of Pseudocade in Figure
46 43
Analysis of Pseudocode in Figure
47 45
Analysis of Pseudocode in Figure
48 46

Summary 47

Terms 47

Review Questions 48
Exercises 48

5 Computer Programming:

Getting Started 49

Programming Requires
Precision 49

Categories of Instructions 49

Computer Programming
Concepts 50
Programming Proficiency 50

Algorithm Development: Preparing for

the Program 51
Choosing the Best Computer
Programs 52
The Programmer’s
Responsibility 52
Converting the Solution of a
Problem to a Computer
Program 52
Walkthrough 53

Debugging 54
Programming Languages 54

Compiler versus Interpretive
Programming Languages 55
Analysis of a Compile Procedure
Analysis of an Interpretive
Procedure 56
interpretive versus Compiler
Languages 58

The BASIC Language 59
Syntax Rules 59
Program Modification 63
Systems Commands 65

Summary 66

Terms 67

Review Questions 67
Exercises 67

55

6 Algorithm Development:
A Way of Thinking 6

Logical Structures 69
Sequence 69
Selection 70
Loops 72

The Accumulation Process 82

An Example Problem (Problem
6.1) 83
Analysis of Flowchart Solution for
Problem 6.1 84
Pseudocode Solution for Problem
6.1 86

Logic Pattern Combinations 87

A Second Example Problem (Problem
6.2) 88
Analysis of Flowchart Solution for
Problem 6.2 88
Pseudocode Solution for Problem
6.2 89

Summary 91
Terms 91
Review Questions 91

Exercises 92
Sequence 92
Selection 92
Loops 92
General 93

7 Computer Programming:
Developing a Way of
Thinking 95

Types of Statements 95

Logical Structures 95
Sequence Logic 96

READ and DATA Statements 96
Rules for Using a READ
Statement 97
Rules for Using a DATA
Statement 97
Examples of READ/DATA
Statements 98

PRINT Statements 100
LPRINT Statements 101

PRINT Statements with Items to Print
Separated by Commas 101

PRINT Statements with
Semicolons 104

LET Statements 106
Summary of the LET Statement 107

END Statements 108
REMARK Statements 108

Sequence Logic with READ, DATA,
PRINT, and LET Statements 108
Analysis of the Program in Figure

75 109

GOTO Statements 110
IF... THEN Statements 110
Relational Symbols in BASIC 111

Selection with IFITHEN
Statements 111
Analysis of the Program in Figure
7.7 112

The Physical Form of Logic on
Flowcharts versus the Physical Form
of Logic in Computer

Programs 114

Loops 115
Counter-Controlled Loops 115
End-of-File Controlled Loops 123
Other Conditions Controlling
Loops 124

The Accumulation Process 127
Walkthrough of the Program in Figure
715 128

Problem 7.1 128
Walkthrough of the Program in Figure
716 130
Walkthrough of the Program in Figure
7.16 Showing Output for Each
Loop 130

Problem 7.2 131
Solution to Problem 7.2 131

Summary 134

BASIC Statements 135
Terms 135

Review Questions 135

Exercises 135
Sequence 136
Selection 136
Loops 136
General 137

8 Algorithm Development:
Structured Design as a
Way of Thinking 139

Why Structured? 139

Logic Control Sructures 140
Sequence 141
IFTHEN-ELSE 141
DO-UNTIL and DO-WHILE 143

Structured Design 145
Top-Down Design and the Control
Module 149

Problem 8.1 153
Flowchart Solution to Problem

8.1 153
Pseudocode Solution to Problem
8.1 157

Problem 8.2 158
Analysis of Problem 8.2 159

Problem 8.3 169
Analysis of Problem 8.3 169

Summary 176
Terms 177
Review Questions 177

Exercises 177

Sequence 177
IF-THEN-ELSE 177
DO-UNTIL; DO-WHILE 178

General 178
9 Computer
Programming:

Structured Design as a
Way of Thinking 181

ELSE Statements for Logic-Control
Structures 181

Logic-Control Structures 182
Sequence 182

IFTHEN-ELSE 182

DO-UNTIL 185

DO-WHILE 187

GOSUB, RETURN: Statements for
Structured-Program
Organization 189

Structured-Program
Organization 192
Analysis of the Program in Figure
96 193

Contents / ix

x /| Contents

Analysis of the Program in Figure
9.7 193

Problem 9.1 196
Analysis of Problem 9.1 196
Solution to Problem 9.1 197

Problem 9.2 201
Analysis of Problem 9.2 201
Solution to Problem 9.2 201

Problem 9.3 210
Analysis of Problem 9.3 210
Solution to Problem 9.3 211

Summary 217
BASIC Statements 217
Terms 217
Review Questions 217

Exercises 218
Sequence 218
IFFTHEN-ELSE 218
DO-UNTIL and DO-WHILE 219
General 219

10 Automatic Loop
Control 223

Automatic Loop Control 223
Flowcharts 223
Pseudocode 226
Computer Programming 227
FOR/NEXT Statements 227
STEP Statement 229
Decrementing at NEXT 230
The Flexibility of FOR/INEXT 231
FOR/NEXT in Structured Design 232
Automatic Versus Nonautomatic Loop

Control 232

Summary 236

BASIC Statements 236
Terms 236

Review Questions 236
Exercises 237

11 Algorithm Development:
Array Processing 239

What Is an Array? 239
Why Use Arrays? 239

Processing Data from an Array 242
Analysis of the Flowchart in Figure
11.2 244

Analysis of the Flowchart in Figure
11.4 246
Referencing Only Needed Iltems 250

Building an Array 250
Reading Data into an Array 251
Generating Data to Place into an
Array 254
Guidelines for Using Arrays 258

Sorting Arrays 258
Analysis of the Flowchart in Figure
11.12 260
Pseudocode for the Flowchart in
Figure 11,12 262

Switches 262

Problem 11.1 263
Analysis of Probiem 11.1 263
Solution to Problem 11.1 263

Problem 11.2 267
Analysis of Problem 11.2 269
Solution to Problem 11.2 271

Summary 276

Terms 277

Review Questions 277
Exercises 277

12 Computer
Programming: Array
Processing 279

What Is an Array? 279
Why Use Arrays? 279

Building an Array 280

Ruies on the Use of the DIM
Statement 280

Array Processing: An Example
Problem 280

Generating Data in the Algorithm to
Place in an Array 286

Guidelines for Using Arrays 287

Switches 288

Sorting Arrays 290
First-Sort Technique 290
Second-Sort Procedure 293

Problem 12.1 295
Analysis of Problem 12.1 295
Solution to Problem 12.1 296

Problem 12.2 299
Analysis of Problem 12.2 299
Solution to Problem 12.2 300

Flexible Ways of Processing
Arrays 305

FOR/NEXT with Negative
Steps 307

String Arrays 307
Summary 308
BASIC Statements 308
Terms 309

Review Questions 309
Exercises 309

13 Nested Loops and
Two-Dimensional
Arrays 311

Nested Loops 311
Analysis of the Algorithms in Figure
13.2 311
Problem 13.1 314

Two-Dimensional Arrays 318
Building Two-Dimensional
Arrays 320
Problem 13.2 324

Summary 336

Terms 336

Review Questions 336
Exercises 337

14 Algorithm Development:
File Processing 339

Examples of File Processing in
Manual Data Processing 339

File Structures 342

System Flowcharts 342
Creating a File 344

The Control (Key) Field 344

Definition of Sequence 346
Sequence Check to Previous Highest
Control Field 347
Sequence Check Involving Each
Successive Pair of Control
Fields 351

Updating a File 353
Analysis of the Flowchart in Figure
14.14 357
Optional Approach for Updating 363

Merging Files 364
Analysis of the Flowchart in Figure
1418 365

Control Break (Report Writing) 370
The Summary Report 373
The Detail Report 377

Summary 379
Terms 380
Review Questions 380

Exercises 380
File Creation 380
Sequence Checking (to previous

highest control field) 381

Updating 381
Merging 381
Control Break (Report Writing) 381
General 382

15 Computer
Programming: File
Processing 383

Diskette Organization 383

INPUT Statement 385
Things to Know about INPUT
Statements 387
Using INPUT Statements 388
Prompting with INPUT
Statements 389

Creating a File 389
Analysis of the Program in Figure
15.3 391

The Control (Key) Field 396

Sequence Check 397
Analysis of the Program in Figure
155 398

Updating a File 401
Analysis of the Program in Figure
15.8 408
Merging Files 416
Analysis of the Program in Figure
15.11 416

Control Break (Report Writing) 425
The Summary Report 425
The Detail Report 432

Summary 434
BASIC Statements 435
Terms 435
Review Questions 435

Contents / xi

xii / Contents

Exercises 435

File Creation 435

Sequence Checking (to previous
highest key) 436

Updating 437

Merging 437

Control Break (Report Writing) 437
General 438

16 Formatting Printed
Output 439

Vertical Spacing (The PRINT
Statement) 440

Horizontal Spacing (The TAB
Statement) 441

Formatting Output (The USING
Statement) 444
Assigning Print Images to
Variables 447
Printing Commas 449
Printing Dollar Signs 449
Printing Negative Number
Notations 451
Printing String Data with USING 451

Positioning Numeric Data in
Output 452

Positioning String Data in
Output 454

Summary of Image Characters 454

Problem 16.1 455
Analysis of Problem 16.1 455
Solutions to Problem 16.1 455

Problem 16.2 457
Analysis of Problem 16.2 457
Solution to Problem 16.2 458

Summary 460

BASIC Statements 460
Terms 461

Review Questions 461
Exercises 461

17 Debugging 463

Approach to Debugging 463
The Emotions of Debugging 464

Types of Errors 464
Syntax Errors 464
Logic Errors 465

Trace Procedures 466
Walkthrough 466
Computer Trace 466
Programming Trace 472

Summary 474

BASIC Statements 475
Terms 475

Review Questions 475
Exercises 475

18 Number and Coding
Systems 479

Number Systems 479

Positional Value 480

Symbol Value 481

Base 10 (Decimal) 482

Base 2 (Binary) 483

Base 16 (Hexadecimal) 484

Converting a Decimal to a Binary
Equivalent 484

Converting a Decimal to a
Hexadecimal Equivalent 486

Converting a Binary to a Hexadecimal
Equivalent 488

Converting a Hexadecimal to a Binary
Equivalent 489

Coding Systems 492
Hollerith Code (Figure 18.5) 493
EBCDIC (Figure 18.5) 493
ASCII-8 (Figure 18.5) 496
ASCII-7 (Figure 18.5) 497
Code Ranges 498

Memory 498
Address 499
Parity Bit 499
Words 500

Magnetic Storage 501
Summary 501

Terms 501

Review Questions 502
Exercises 502

Index 503

Problem Solving

WHAT IS A PROBLEM?

This may seem to be a silly question. After all, everyone knows a problem
is something that has to be solved. Is there a person alive who has not ever
stated, “I have a problem”—or at times, “you have a problem”?! Webster’s
dictionary states what may be obvious; that is, that a problem is “a question
proposed for solution or consideration.”

This leads us to a second question: why would a computer programmer
be concerned about what a problem is? The answer is because many times a
person does not see the relationship between a problem and the procedure
needed to solve it. Computer programming is a problem-solving procedure.
Learning about computers is without much merit unless the knowledge can be
used to help solve some problem. The procedure used to solve a problem—pro-
gramming— is of primary importance. Using a computer is of secondary im-
portance.

A problem that might be solved by a computer programmer could in-
volve such concerns as payrolls, general ledgers, sales analysis, depreciation,
amortization schedules, accounts payable, accounts receivable, production
schedules, or many other business-related record-keeping problems. A pro-
grammer working in these areas would be a business or commercial program-
mer.

Another group of problems a computer programmer might help solve in-
clude calculating the area of a circle, determining a space vehicle’s flight path,
or figuring the length of the third side of a right triangle. A programmer work-
ing on these mathematical and science-related problems would be a scientific
programmer. As the usefulness of the computer increases, programmers will
deal with problems in many other fields as well—for example, in medicine, in
government, and even in music.

Since a computer program is a problem-solving procedure, the first prior-
ity of anyone writing a computer program is to determine the problem. Al-
though this may seem obvious, it is not unusual for beginning programming
students to get so involved with procedures that they neglect to understand
the problems. Understanding a problem involves more than knowing that
payroll calculates pay. It involves knowing or learning how the pay is calculat-
ed. Remember, if a problem is to be solved, the problem must first be under-
stood. Only then can we develop a procedure that will solve the problem.

PROBLEM SOLVING: AN ACQUIRED SKILL

Problem solving involves understanding what the problem requires and
then developing procedures to meet these requirements. One school of
thought holds that a person either has or doesn’t have problem-solving abili-
ty; that is, if a person is not born with the ability to solve problems, he can
never acquire it. One fallacy of this type of reasoning is that one can’t deter-
mine for sure whether he has the ability to solve problems until he has solved

2 / An Introduction to Structured Programming Using BASIC

at least one. A more positive approach might be to assume that problem solv-
ing is a skill that can be developed or even acquired (learned) as other skills
are.

To develop or learn problem-solving skills, one can either begin by study-
ing some problem-solving techniques or by actually solving problems. In this
text we'll concentrate on a formal method of study that helps develop these
skills, as well as on exercises that provide practical experience in problem
solving.

COMPUTER-RELATED PROBLEMS

All the problems discussed in this book allow the use of computers for
their solutions. Not all problems allow the use of a computer. There are three
fairly common characteristics of problems that make it feasible to use a com-
puter: they are repetitive, they are numerical, and they are definable.

Repetitive

When a problem is of a repetitive nature, it has to be solved over and over.
An example would be the problem of figuring and distributing payroll. This is
a problem that requires a solution weekly or perhaps monthly, depending on
the pay period an organization uses. The reason that repetition is important in
using the computer to solve problems is because the procedure (or the solu-
tion) can be used over and over. The cost of developing a computer procedure
to solve a problem is expensive. For example, the process that computerizes
payroll procedures for an organization may cost $100,000 to develop and save
only $2,000 each pay period. If the problem did not recur, the organization
would lose the $98,000 cost that could not be recovered. But if the problem re-
curs fifty times (if the pay period is weekly), $2,000 times fifty would be
$100,000. The time to recover the $100,000 spent on computerizing payroll
would thus be fifty weeks. Each pay period after the fifty-week period would
result in a savings of $2,000.

Numerical

First and foremost, the computer is a number-manipulating machine. A
problem has to be definable quantitatively, or numerically, to be solved by us-
ing a computer. When a baby cries, a problem is causing the crying. But this
problem cannot be reduced to a defined numerical equation. Probably the
child needs understanding, care, love, and compassion. The computer is short
of these qualities—at least as far as we know!

Definable

A problem that cannot be defined or explained probably cannot be
solved. If a workable solution occurs without problem definition, someone has
been lucky. It would be virtually impossible to develop procedures to solve a
given problem by computer if the problem has not been defined. We'll look at
problem definition in more detail later.

WHAT IS DATA PROCESSING?

Data processing is the manipulation of data. Data includes information
such as name, social security number, address, employee identification num-
ber, pay rate, sales amount, discount, account number, invoice number,

Problem Solving / 3

amount of depreciation, or any of the many other items of information that
are generated by a business and that need to be processed. Data processing in-
volves collecting, organizing, and processing this data.

By the time data is processed, it is usually referred to as information. In a
general sense, data processing and information processing are the same. In a
specific sense, however, data refers to one item, such as name, hours worked,
or pay rate. Information is a more modern or progressive term that refers to a
meaningful relationship between items of data. A sales analysis is a collection
of different pieces of data, but collectively, it is information useful to those
who understand the relationships between the figures.

Organizing different kinds of data into information is the central goal or
purpose of data processing. Within this framework, then, many problems oc-
cur that require procedures to solve them. Computer programming is a prob-
lem-solving procedure. To use the computer to solve a problem, a person must
be able to organize data and define the solution in procedural terms that the
computer can “understand,” or that are compatible with the computer’s capa-
bilities.

STEPS IN PROBLEM SOLVING

Any effort made toward solving a problem accomplishes more if the work
follows a schedule or plan. This is true whether the problem is analyzing a bio-
logical specimen, building a bridge, teaching a child how to read, determining
the illness of a patient, or writing a computer program.

Problem solving in a numerical-processing environment involves four
steps. They are:

1. Input

2. Processing Considered the process in a three-step
3. Decision } procedure of Input-Process-Output
4. Output

Almost any procedure developed will involve these four steps.

A close observation of any procedure will show that the complexity of the
solution is caused by multiple inputs, many kinds of processing, a variety of
decisions, and multiple output formats. All of these are interrelated in the pro-
cedure. The key to understanding the procedure is to know exactly what it is
doing and to be sure the correct procedure is being used. Using the correct
procedure means using the correct combination of inputs, processes, deci-
sions, and outputs.

There are nine steps that could be performed in solving a problem by
computer. The list of steps is not inclusive or exclusive; that is, it might be
made either shorter or longer. The list is sufficiently comprehensive to give
one insight into what needs to be done to solve a problem. The steps are nor-
mally done in the order listed.

1. Define the problem. Computer programming is a means to an end, and
the end is the solution to a problem. Any problem to be solved must be de-
fined, or explained; otherwise, not much progress will be made in solving it.
Problem definition involves recognizing that there is a problem and explain-
ing what has to be done to solve it.

2. Plan the required output. Qutput must be planned early in the overall
procedure because the desired output affects the procedures to be used in
solving the problem. If one takes the approach that whatever results are pro-
duced as output will be used, the procedures planned may not produce the de-
sired output and the problem will remain unsolved.

4 |/ Anlntroduction to Structured Programming Using BASIC

As an example, one type of output required in managing payroll would be
checks containing earnings for employees. A programmer that causes the
computer to write $25.00 rather than $250.00 on a check would need more
work on planning correct output.

3. Specify the input needed to produce the planned output. After plan-
ning the output, the next step is to determine the needed input. The items of
data to be processed constitute input. The desired output determines the
needed input; that is, if earnings are to be the output, then hours worked and
pay rate will be needed as input. Other input items for earnings would include
social security and income tax rates for calculating the amount to withhold
from gross pay. Obviously, there is no need to think about input before deter-
mining output.

4. Devise a procedure to obtain output from input. Once the outputs and
inputs are determined, a procedure is required to process the input data into
the output data. This procedure would normally involve decisions and calcula-
tions. In a payroll problem, the procedure would calculate net pay as output
by multiplying the input data of hours worked by pay rate and subtracting
any deductions. If an employee is paid overtime at twice the regular rate for
working over forty hours this calculation would also have to be part of the pro-
cedure.

Such a planned procedure is called an algorithm. Three structures that
are used to develop algorithms are flowcharts, pseudocode, and computer pro-
grams; these techniques of algorithm development are covered in subsequent
chapters. These three methods are not the only structures that can be used to
develop algorithms, but they are used extensively. Flowcharting and pseudo-
code are techniques used to develop a procedure. A computer program, of
course, is the final algorithm or set of instructions given to the computer.

5. Determine the data to be retained during processing. As the procedure
is developed, certain data that are generated at one point in the procedure
may be needed again at a later point. It is the responsibility of the one prepar-
ing the procedure to make sure such data is in fact retained for future use. For
example, once the income tax deduction is calculated in a payroll problem, the
amount must be retained until all deductions are calculated, at which time all
of them can be added together to calculate total deductions.

6. Consider alternate processing possibilities. Although at least one pro-
cedure must be developed to solve a problem, most of the time there are other
procedures that will also work. The problem solver, or computer programmer,
must be flexible in developing alternative procedures. The problem solver
should have or develop the ability to recognize different ways to solve a prob-
lem and must be able to discern which is the best way.

In a payroll problem one procedure to calculate net pay could be to:

Calculate regular pay

Calculate overtime pay

Add regular to overtime pay to get gross pay

Calculate income tax deduction

Subtract income tax deduction from gross pay to get an intermediate re-
sult

Calculate social security deduction

Subtract social security deduction from the intermediate result to get net

pay
A better procedure for the same problem might be to:

4R ol

N

1. Calculate regular pay
2. Calculate overtime pay

Problem Solving / 5

Add regular to overtime pay to get gross pay

Calculate income tax deduction

Calculate social security deduction

Add income tax deduction to social security deduction to get total deduc-
tions

7. Subtract total deductions from gross pay to get net pay

O Tuh o

The second approach calculates total pay and then total deductions before
subtracting to arrive at net pay. The first approach calculated gross pay and
subtracted each deduction as it was generated to arrive at an intermediate re-
sult.

It should be noted that if the problem definition calls for an employee’s
pay to be generated after each deduction calculation, then the first procedure
would have to be used. It is important to use the best procedure possible
based on the problem definition.

1. Write the computer program. After the procedure has been planned, a
computer program can be written using a programming language. The pro-
gram will consist of instructions to the computer to perform certain tasks. In
learning a programming language it is important to know what each instruc-
tion will do so they can be put in the correct sequence for the computer to fol-
low.

8.Test and debug the program. After the program has been prepared, the
computer will follow each of the instructions in the sequence they have been
written in. In computer terminology it is said that the computer executes the
program. If all instructions are written correctly and in the correct order, the
input data will produce the correct output. Testing the program means mak-
ing sure the correct output is produced from the input data.

Even the most experienced programmer seldom writes or prepares a pro-
gram that works correctly the first time. In testing the program, errors will
show up and corrections will be made by the programmer. These corrections
may involve changing the form of an instruction, changing the place the in-
struction falls in the program, removing instructions from the program, or
adding new instructions to the program. After corrections are made to the
program it is tested again with input data. If the output data is correct then
the program is ready to use; if not, the program requires more changes and
more testing. This procedure of testing and correcting continues until the pro-
gram produces correct output. Errors in a computer program are called bugs
and correcting these errors is called debugging.

9. Document the program. Documentation is any written material that
helps explain the nature of a computer program. The amount and type of doc-
umentation required depends on the teacher in a classroom situation or on the
organization if one is a practicing programmer.

A computer program, especially a large one, is very detailed and may in-
clude many intricate relationships between the various instructions. For this
reason, written explanation is sometimes necessary for programmers to un-
derstand the program. This is especially true when the program may have to
be changed in the future. A programmer who writes a program sometimes for-
gets exactly how a set of instructions process the input data.

Documentation may take many forms. Some of the more common are:

1. A written narrative description of what the program is doing and how this
is accomplished

2. A flowchart and/or pseudocode

3. Comments within the program explaining what various instructions or
groups of instructions are accomplishing

6 / AnIntroduction to Structured Programming Using BASIC

4. Input descriptions
5. Output descriptions
6. Descriptions of any special processing techniques

SUMMARY

This chapter has introduced the idea of a problem. Computer program-
ming involves problem solving.

“What is a problem?” is more than a tricky question. It is important that
a person develop the ability to recognize problems as the first step to solving
them. Problem solving techniques should be viewed as something to be
learned and practiced.

The world of problem solving is virtually endless. Not all problems are
candidates for computer solutions. Those that are, however, form a very siz-
able group. The problems that tend to be good candidates for computer solu-
tion have the three common characteristics of being repetitive, numerical, and
definable or explainable.

Data processing is more than merely processing pieces of data. The more
inclusive term “information processing” suggests that what is processed
should be meaningful and have a justifiable reason for processing; it should be
useful information.

Any problem to be solved should be approached in a systematic manner.
The basic steps for problem solving include:

Defining the problem

Planning the required output

Specifying the input needed to produce the planned output
Devising a procedure to obtain the output from the input
Determining the data to be retained during processing
Considering alternative procedure possibilities

Writing the computer program

Testing and debugging the program

Documenting the program

PRI AW

TERMS

algorithm decision problem solving

bug execute process

business programmer input scientific programmer
data processing output testing

debug problem

REVIEW
QUESTIONS

=

Name the two general categories of computer programmers and explain
the work of each.

Name three problems that are normally considered to be business related.
Name three problems that might not be candidates for computer solution
and note why.

Differentiate between data processing and information processing.

Name the four basic functions needed for problem solving in a computer
environment. These four functions are sometimes reduced to what three
basic functions?

6. Name the steps that supply a systematic approach to problem solving.

Sl ol

