Formation of C-C Bonds

Jean Mathieu and Jean Weill-Raynal Preface by D. H. R. Barton

Volume III

Introduction of an α-Functional Carbon Chain

Formation of C-C Bonds

Jean Mathieu and Jean Weill-Raynal

Preface by D.H.R.Barton

Volume III

Introduction of an α -Functional Carbon Chain

1235 Formula Schemes and 300 Tables

Georg Thieme Publishers Stuttgart 1979

Pr. JEAN MATHIEU

Directeur des Recherches Extérieures de Roussel Uclaf Professeur à l'Ecole Nationale Supérieure de Techniques Avancées Roussel Uclaf, Division Scientifique F-93 Romainville

Dr. JEAN WEILL-RAYNAL

Assistant à la Direction des Recherches Extérieures de Roussel Uclaf Maître de Conférence à l'Ecole Supérieure de Techniques Avancées Roussel Uclaf, Division Scientifique F-93 Romainville

CIP-Abbreviated title entry in catalog of Deutsche Bibliothek

Mathieu, Jean:

Formation of C-C bonds / Jean Mathieu and Jean Weill-Raynal. Pref. by D.H.R. Barton. — Stuttgart : Thieme.

NE: Weill-Raynal, Jean:

Vol. 3. Introduction of an $\alpha\text{-functional carbon chain}$: 1235 formula schemes and 300 tables. - 1979. -

ISBN 3-13-496201-2

Some of the product names, patents and registered designs referred to are in fact registered trademarks or proprietary names even though specific reference to this fact is not always made in the text. Therefore, the appearance of a name without designation as proprietary is not to be construed as a representation by the publisher that it is in the public domain.

All rights, including the rights of publication, distribution and sales, as well as the right to translation, are reserved. No part of this work covered by the copyrights hereon may be reproduced or copied in any form or by any means – graphic, electronic or mechanical including photocopying, recording, taping, or information and retrieval systems – without permission of the publisher.

© 1979 Georg Thieme Verlag, Herdweg 63, Postfach 732, D 7000 Stuttgart 1, Printed in Germany by Tutte, D 8391 Salzweg-Passau. (Monophoto 400/31).

ISBN: 3 13 4962 01-2

J. Mathieu and J. Weill-Raynal Formation of C-C Bonds Volume III

Dedicated to the memory of JEAN-CLAUDE ROUSSEL for his confidence in the future of research

此为试读,需要完整PDF请访问: www.ertongbook.com

Introduction

The third volume of this series is devoted to reactions by which a chain can be attached to another chain, aromatic or aliphatic ring, at carbon atoms α to a heteroatom (halogen, oxygen, sulfur, nitrogen). Amongst these reactions, hydroxyalkylation and acylation are probably the most important.

This volume deals both with reactions which insert a chain substituted with a single α -heteroatom (i.e. in the first oxidation state) namely:

- α-haloalkylation
- $-\alpha$ -hydroxyalkylation and α -alkoxyalkylation
- α-thioalkylation
- $\alpha\text{-aminoalkylation}$ and those involving a chain substituted on the $\alpha\text{-carbon}$ atom either with 2 heteroatoms or a double-bonded heteroatom (i.e. in the second oxidation state) namely:
- gem-α-dihaloalkylation
- acylation, gem- α -dialkoxyalkylation, α -alkoxyalkylidenation and related reactions
- thioacylation, gem- α -dithioalkylation and α -thioalkylidenation
- iminoalkylation, α -aminoalkylidenation and related reactions

In each chapter, reactions are classified with respect to the hybridization of the attacked carbon atom in the following order:

- activated carbon atoms
- aliphatic organometallics
- olefins undergoing addition reactions
- aromatic rings
- aromatic organometallics
- olefins undergoing substitution reactions
- vinylic organometallics
- 1-alkynes

In the same way as in the preceding volumes, we have used a general concept of organic chemistry with the nucleophilic molecule being considered as the substrate and the ecletrophilic one as the reagent.

We hope that these systematic classifications provide a useful guide to the easy retrieval of a specific reaction.

We express our grateful acknowledgements to Drs. H. Felkin and J. B. Taylor for their careful reading of the manuscript and valuable suggestions; to Miss H. Deforeit for her help in the literature data research and to Mrs. Cohen and Devine and Miss D. Salaün for the checking of literature data, manuscript and proofs.

This work has been done by courtesy of the Direction Générale de Roussel-Uclaf.

Jean Mathieu

Jean Weill-Raynal

Used Abbreviations

anh	anhydrous
aq	aqueous
at	technical atmosphere
conc.	concentrated
d	day
DABCO	1,4-diazobicyclo [2.2.2.] octane
DCC	dicyclohexylcarbodiimide
DMF	dimethylformamide
HMPT	hexamethylphosphoric triamide
hr	hour, hours
hydr	hydrolysis
i	iso
i. b. t.	ice bath temperature
i. s. m.	ice salt mixture
liq	liquid
min	minute

NMP	N-methylpyrrolidone
ovn	overnight
PE	petroleum ether
PPA	polyphosphoric acid
rfx	reflux
r.t.	room temperature
S	secondary
s.b.	steam bath
sec	second
soln	solution
sym.	symmetrical(ly)
t	tertiary
THF	tetrahydrofuran
Tos	tosyl (p-toluenesulfonyl)
TMEDA	N,N,N',N' -tetramethyl-ethylenediamine
TMU	N, N, N', N' -tetramethylurea
u.p.	under pressure
	*

Contents

	Introduction		
III A ,	α-Haloalkylation of Organic Compounds		2
III A a	$\alpha\textsc{-Haloalkylation}$ of Aliphatic Compounds	$-\overset{1}{c}-z \qquad \longrightarrow \qquad -\overset{1}{c}-\overset{1}{c}-x $	2
	$\alpha\textsc{-Haloalkylation}$ of Aromatic Rings	i i	
III B	lpha-Hydroxyalkylation and $lpha$ -Alkoxyalkylation of Organic Compo	unds	5
III B ₁	α-Hydroxyalkylation		10
III B ₁ a	₁ α-Hydroxyalkylation of Activated Carbon Atoms	-ç-H + o=c → -ç-c	10
	$_{2}$ α -Hydroxyalkylation of Aliphatic Organometallics		
III B ₁ a	$_3$ β -Hydro- α -hydroxyalkylation of Olefins	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16
	$_{_1}$ α -Hydroxyalkylation of Aromatic Rings	OH	
III B ₁ b	₂ α-Hydroxyalkylation of Aromatic Organometallics	$Ar-X \longrightarrow Ar-M + O=C \longrightarrow Ar-C- \dots $	30
	₁ α-Hydroxyalkylation of Olefins		
	$_{2}$ α -Hydroxyalkylation of Vinylic Organometallics	UH	
III B ₁ c	α -Hydroxyalkylation of 1-Alkynes	$-c \equiv c + o = c $ $\longrightarrow -c \equiv c - c - c - c - c - c - c - c - c $	62
	α-Alkoxyalkylation		
III B ₂ a	a-Alkoxyalkylation of Activated Carbon Atoms	$-\stackrel{!}{c}_{-H} \longrightarrow -\stackrel{!}{c}_{-\stackrel{!}{c}_{-}} \stackrel{!}{\ldots} \dots \dots$	86

III $B_2 a_2 \alpha$ -Alkoxyalkylation of Aliphatic Organometallics	$-\frac{1}{C}-x \left(\longrightarrow -\frac{1}{C}-M \right) \longrightarrow -\frac{1}{C}-\frac{1}{C}-\dots \qquad . \qquad $
III $B_2 a_3 \ \alpha$ -Alkoxyalkylation of Enol Ethers and Related Compounds	$RO-\overrightarrow{C}=\overrightarrow{C} + RO \xrightarrow{RO} \overrightarrow{C} - \overrightarrow{C}-\overrightarrow{C}- \dots \dots$
III $B_2 a_4 \beta$ -Halo- α -alkoxyalkylation of Olefins	$c=c' + X c \longrightarrow X - c - c - c - c - c - c - c - c - c -$
III B_2b_1 α -Alkoxyalkylation of Aromatic Rings	Ar−H → Ar−C−
III B_2b_2 α -Alkoxyalkylation of Aromatic Organometallics	$Ar-X$ $\left(\longrightarrow Ar-M \right)$ $\longrightarrow Ar-\stackrel{\downarrow}{\circ}_{OR}$ \cdots
III B_2c α -Alkoxyalkylation of Vinylic Organometallics	$c=c-x$ (\longrightarrow $c=c-m$) \longrightarrow $c=c-c-c$
III B_2d α -Alkoxyalkylation of 1-Alkynes	-с≡с-н
III C α-Thioalkylation of Organic Compounds	
III C a ₁ α-Alkylthioalkylation of Activated Carbon Atoms	$-\dot{c}$ -H \longrightarrow $-\dot{c}$ - \dot{c} -
III Ca_2 α -Thioalkylation of Aliphatic Organometallics	SR
III Ca_3 α -Alkylthioalkylation of Enol Ethers and Ketenes	$z-c=c'$ + RS \longrightarrow $z-c-c-c$ \longrightarrow $z-c-c$ \longrightarrow $Z-c$ \longrightarrow
III Cb_1 α -Alkyl and Arylthioalkylation of Aromatic Rings	
III Cb_2 α -Alkylthioalkylation of Aromatic Organometallics	$Ar-X$ $\left(\longrightarrow Ar-M \right) \longrightarrow Ar-\stackrel{i}{\underset{SR}{\bigcirc}} \dots $
III D α -Aminoalkylation and α -Amidoalkylation of Organic Compound	ds
III D_1 α -Aminoalkylation	
III D_1a_1 α -Aminoalkylation of Activated Carbon Atoms	$-\stackrel{\downarrow}{c}-H \longrightarrow -\stackrel{\downarrow}{\stackrel{\downarrow}{c}-\stackrel{\downarrow}{c}-} \dots $
III $D_1 a_2 \alpha$ -Aminoalkylation of Aliphatic Organometallics	

		Contents	IX
III D ₁ b	o ₁ α-Aminoalkylation of Aromatic Rings		239
	o_2 α -Aminoalkylation of Aromatic Organometallics Ar-X $\left(\longrightarrow Ar-M \right) \longrightarrow Ar-\stackrel{1}{\leftarrow} Ar-M$		
III D₁c	$c = \alpha$ -Aminoalkylation of Vinylic Organometallics	6 8 18 190 H H	246
III D ₁ d	If α-Aminoalkylation of 1-Alkynes		247
III D_2	α-Amidoalkylation		248
	a ₁ α-Amidoalkylation of Activated Carbon Atoms		
III D ₂ a	a_2 α -Amidoalkylation of Aliphatic Organometallics $-\stackrel{l}{c}-x$ $\left(\longrightarrow -\stackrel{l}{c}-M\right)$ \longrightarrow $-\stackrel{l}{c}-\stackrel{l}{c}-M$		252
III D ₂ b	D ₁ α-Amidoalkylation of Aromatic Rings		252
III D ₂ b	o_2 α -Amidoalkylation of Aromatic Organometallics		253
III D ₂ c	α -Amidoalkylation of Vinylic Organometallics	9 F N N N N	253
III E	gem-α-Dihaloalkylation of Organic Compounds		254
III Ea	gem - α -Dihaloalkylation of Olefins		
III Eb	gem-α-Dihaloalkylation of Aromatic Rings		258
III F	Acylation, gem - α -Dialkoxyalkylation, α -Alkoxyalkylidenation and α -Acyloxyalkylidenation of Organic Compounds		259
	Acylation		
III F ₁ a ₁	Acylation of Activated Carbon Atoms		264

此为试读,需要完整PDF请访问: www.ertongbook.com

III F_2 c $gem-\alpha$ -Dialkoxyalkylation and α -Alkoxyalkylidenation of 1-Alkynes $-C \equiv CH + (RO)_3 C = CH$

Introduction of an α-Functional Carbon Chain

III A α -Haloalkylation of Organic Compounds

 α -Haloalkylation of organic compounds has been developed to a much smaller extent than halomethylation.

$$-\overset{1}{C}-Z \longrightarrow -\overset{1}{C}-\overset{1}{C}-X$$

$$Z = H \text{ or } -B'$$

$$Ar - H \longrightarrow Ar - C - X$$

There are a few examples of haloalkylation of activated carbon atoms by means of aldehydes and ketones in the presence of hydrogen halides.

Boranes are haloalkylated by dihalocarbanions (see III A a).

Reactive aromatic compounds are haloalkylated by aldehydes in the presence of hydrogen halides or by α -halo ethers (see III A b).

III Aa $-c - z \longrightarrow -c - c - x$

$$\begin{array}{c} C_{2}H_{5}OOC \\ CH_{3}-CO-CH_{2} \end{array} + O = C \xrightarrow{CH_{3}} \begin{array}{c} HCI \\ CH_{2}-CI \end{array} \xrightarrow{\begin{array}{c} HCI \\ 72 \text{ hr } (-5;-0^{\circ}) \end{array}} \begin{array}{c} C_{2}H_{5}OOC \\ CH_{3}-CO-CH-C-CH_{3} \\ CH_{2}-CI \end{array}$$

α-Haloalkylation of Aliphatic Compounds

Apart from the halomethylation of activated carbon atoms (see I A₁ a), there are a few examples of α-haloalkylation of aliphatic compounds.

The active methylene group of ethyl acetoacetate reacts with chloroacetone to give ethyl 2-acetyl-3,4-dichloro-3-methylbutanoate in low yield1.

An analogous reaction occurs with propiophenone which is chlorobenzylated by benzaldehyde in the presence of hydrochloric acid².

On the other hand, the aldolization of cyclohexanone can be effected in acidic medium to give 2-(1-chlorocyclohexyl)-cyclohexanone in good yield^{3, 4}. In the mixed condensation of benzaldehyde with 2-phenyl-chromanone, chloroalkylation occurs only in fair yield, with concomitant dehydrochlorination⁵.

⁴E. Wenkert, S. K. Bhattacharya, E. M. Wilson, J. Chem. Soc. 1964, 5617.

⁵L. Reichel, H. Grytzka, Justus Liebigs Ann. Chem. **720**, 154 (1968).

¹E.R. Alexander, S. Baldwin, J. Am. Chem. Soc. **73**, 356 (1951).

²R.D.Abell, J. Chem. Soc. **1953**, 2834.

³J. Plesek, Chem. Listy **49**, 1844 (1955); C.A. **50**, 9306 (1956).

$$C_{4}H_{9}-CH=CH_{2} \xrightarrow{\text{(BH}_{3})_{2} \atop \text{THF}} B(C_{6}H_{13})_{3} \xrightarrow{Br_{2}CH-COOC_{2}H_{5} \atop t-C_{4}H_{9}OK, \ t-C_{4}H_{9}OH} C_{6}H_{13}-CH-COOC_{2}H_{5}$$

$$Br_{2}CH-COOC_{2}H_{5}$$

$$C_{6}H_{13}-CH-COOC_{2}H_{5}$$

$$Br_{2}CH-COOC_{2}H_{5}$$

$$C_{6}H_{13}-CH-COOC_{2}H_{5}$$

$$Br_{2}CH-COOC_{2}H_{5}$$

$$C_{6}H_{13}-CH-COOC_{2}H_{5}$$

$$Br_{2}CH-COOC_{2}H_{5}$$

$$C_{6}H_{13}-CH-COOC_{2}H_{5}$$

$$Br_{2}CH-COOC_{2}H_{5}$$

$$C_{6}H_{13}-CH-COOC_{2}H_{5}$$

$$C_{6}H_{13}-CH-COOC_{2}H_{5}$$

$$C_{6}H_{13}-CH-COOC_{2}H_{5}$$

Organoboranes formed by the addition of diborane to olefins are haloalkylated by condensation with the carbanion formed from ethyl dibromoacetate in the presence of potassium
$$t$$
-butoxide; an intramolecular substitution of one of the halogen atoms by an alkyl group transferred from the boron atom gives rise to α -bromo esters ¹ (see II A_4 a).

C(CH3)3

An improvement has been obtained by using potassium 2,6-di-*t*-butylphenoxide instead of potassium *t*-butoxide² especially when dichloroacetonitrile is employed as the haloalkylating reagent³.

As only one of the three alkyl groups is transferred from the boron atom, the use of mixed alkylboranes formed from 9-bora[2.2.2]bicyclononane (9-BBN) and an olefin allows a selective transfer. This procedure has been applied to α -haloalkylations by ethyl dichloroacetate⁴ and by dichloroacetonitrile³.

¹H. C. Brown, M. M. Rogic, M. W. Rathke, G. W. Kabalka, J. Am. Chem. Soc. **90**, 1911 (1968).

²H. C. Brown, H. Nambu, M. M. Rogic, J. Am. Chem. Soc. **91**, 6855 (1969).

³*H. Nambu, H. C. Brown,* J. Am. Chem. Soc. **92**, 5790 (1970).

⁴H. C. Brown, M. M. Rogic, J. Am. Chem. Soc. **91**, 2146 (1969).

III Ab ArH
$$\longrightarrow$$
 Ar $-\overset{1}{\bigcirc}$ -X

α-Haloalkylation of Aromatic Rings

$$\alpha$$
-Haloalkylations of aromatic rings are less frequently carried out than halomethylations¹ (see I A b₁).

The condensation of benzyl phenyl ether with 1,2-dibromoethyl ether should be mentioned².

$$C_6H_5-CH_2-O$$
 + $C_2H_5O-CH-CH_2Br$ CH_3-COOH

+ OHC-CH₃
$$\frac{HCI}{25 \text{ min (10-13°)}}$$
 $\frac{CI}{S}$ $\frac{CI}{CH-CH_3}$ $\frac{CI}{CH-CH_3}$ $\frac{CI}{CH-CH_3}$

$$CH_{3}OOC \xrightarrow{f}_{S} + OHC - CH_{3} \xrightarrow{ZnCl_{2}, HCl \\ CHCl_{3}} CH_{3}OOC \xrightarrow{f}_{S} CH - CH_{3}$$

$$CH_{3}OOC \xrightarrow{f}_{S} CH - CH_{3}$$

$$35 \%$$

3 The α -chloroethylation of thiophene is used for the preparation of the precursor of 2-vinylthiophene³.

The less sensitive methyl 2-thiophenecarboxylate reacts in the presence of zinc chloride⁴.

3,5-Dimethylisoxazole has been condensed with benzaldehyde in the presence of hydrogen chloride in a sealed vessel⁵.

Quinones which have some aromatic character have been haloalkylated under analogous conditions⁶.

¹G.A. Olah, W. S. Tolgyesi in G.A. Olah, Friedel-Crafts and Related Reactions, Vol. II, Part. 2, p. 659, J. Wiley & Sons, New York, 1964.

²P. Bapsères, R. Quelet, Bull. Soc. Chim. France 1953, C. 50.

³W. S. Emerson, T. M. Patrick, Org. Synth. Coll. Vol. **4**, 980 (1963).

⁴M. Janda, F. Dvorak, O. Exner, Collect. Czech. Chem. Commun. 27, 1191 (1962).

⁵N.K.Kochetkov, S.D.Sokolov, V.E.Zhvirblis, Zh. Obshch. Khim. **30**, 3675 (1960); C.A. **55**, 18707 (1961).

⁶R.H.Thomson, J. Chem. Soc. 1953, 1196.

III B α -Hydroxyalkylation and α -Alkoxyalkylation of Organic Compounds

The introduction of a chain bearing on the α -carbon atom an oxygen-containing function of the first oxidation state includes the following two processes: α -hydroxyalkylation, i.e. introduction of a chain with a hydroxyl group, and α -alkoxyalkylation, i.e. introduction of a chain with an alkoxy group, or, in some cases, an aryloxy group.

These processes can be effected either on an aliphatic chain or on an aromatic ring.

In almost all cases, they involve reaction of a nucleophilic substrate with an electrophilic reagent.

Aldehydes and ketones are used as electrophilic reagents in α -hydroxyalkylations, whereas acetals, >C $< \frac{OR}{OR}$, α -halo ethers, >C $< \frac{OR}{X}$, or, in a few cases, aminals, >C $< \frac{OR}{N}$ are employed in α -alkoxyalkylations.

The nucleophilic substrates include:

- Enolate anions formed from substrates containing carbon atoms activated by one or two electron-withdrawing groups such as ester, cyano, or keto groups.
- Carbanions formed in the α -position to aromatic rings or to double and triple carbon-carbon bonds.
- Organometallics prepared from alkyl, aryl, or vinyl halides.
- Metallic derivatives of 1-alkynes.
- Aromatic rings.
- Some reactive olefins and enol ethers which react by addition.

III $B_1 \alpha$ -Hydroxyalkylation

Aldehydes and ketones have been reacted with various nucleophilic substrates:

$$-\overset{1}{c}-H + O=\overset{1}{c} \longrightarrow -\overset{1}{c}-\overset{1}{c}-\overset{1}{c}$$

Carbon atoms activated by one or two electron-withdrawing heteroatoms or groups generally react by a nucleophilic mechanism involving formation of an anion which adds to the carbonyl group of aldehydes and ketones (see III B_1 a_1).

此为试读,需要完整PDF请访问: www.ertongbook.com