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Preface

Since the nineteen-seventies chaos has become a highly popular term which, possibly
due to its inherent vagueness, provides a succinct notion for complexity and unpre-
dictability of dynamical systems. Consequently, there is no lack of textbooks that are
concerned with the stunning aspects of chaotic dynamical systems, and implications
thereof in science, engineering and economics. On the other hand, the statistically
oriented approach to dynamics has also flourished during the past few decades, as for
example can be seen from a number of excellent textbooks on ergodic theory and its
applications. Dating back to the first half of the last century, this approach in some
sense introduces the notion of chance even to completely deterministic systems. By
bringing the two viewpoints together, an illustrative impression of the both natural and
fruitful interplay of chaos and chance, or, more formally, of the geometrical and the
statistical approach to dynamics may be gained. So far, however, a pertinent introduc-
tory though mathematically reliable text has been hard to find. It is the aim of the book
in hand to help close this notable gap.

In writing this book it has been my intention to draw the reader’s attention to several
interesting examples, thereby motivating more general (and abstract) notions as well
as results in a setting as simple as possible. Illuminating dynamical systems abound,
and it need not be difficult to get an intuitive feeling of the complexity inherent in them.
As one class of examples among others we shall repeatedly and on different levels of
sophistication deal with billiards. By its conceptual simplicity nothing could be more
deterministic and hence predictable than a billiard, could it? Given a specific shape
of a table we shall, however, observe that the future fate of a voyaging billiard ball
may be completely unpredictable beyond a surprisingly small number of reflections.
In this case, calculation-based predictions of the ball’s further journey are doomed to
be no more reliable than throwing a die. But how does chance emerge from a purely
deterministic system, and how may it help us to better understand the latter? It will
take us some time to conceptualize and thoroughly address these questions.

It is my firm belief that illustrative examples are indispensable for developing a
general theory, not only as initial justification but also as lasting motivation. Accord-
ingly, it has never been my intention (let alone ability) to present a comprehensive
monograph on the topic. As mentioned earlier, a host of excellent advanced texts can
be drawn on for more extensive and detailed study; Appendix B contains a short and
somewhat biased list of books to this purpose. I believe, however, that the elementary
insights gained here together with the mathematical tools developed will enable the
reader to study these advanced texts more rewardingly and with greater relish.

This book comprises five chapters and two appendices containing background ma-
terial and references to the literature. As Chapter One serves as an informal introduction
and Chapter Five lets the reader take a look at more advanced topics, Chapters Two to
Four should be considered the core part of this text. Chapter Two briefly introduces the
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topologically oriented approach to chaotic dynamics. Chapters Three and Four focus
on the statistical description of dynamical systems in some more detail. Especially,
their resemblances to and differences from special stochastic, i.e. chance-driven and
hence explicitly random, processes are thoroughly discussed. As throughout, the em-
phasis is on specific examples rather than on general results. By and by the reader will
thus come to think of chaos and chance as of two sides of the same coin.

This is primarily a mathematics text. In the first place it addresses advanced under-
graduates and beginning graduates with a sound knowledge of calculus. Ideally, the
reader should also be endowed with a basic knowledge of measure theory. Appendix A
gathers the most relevant notions and results from measure theory that we shall rely on
in the main text; anyone to whom the content of Appendix A seems familiar is certainly
well prepared. Another desirable prerequisite concerns discrete dynamical systems:
though essentially self-contained, Chapter Two proceeds at a good pace, which may
be demanding for a complete novice. To better appreciate its content, a precedent
exposition to an introductory book, e.g. parts of Devaney’s highly readable text, may
be helpful. Yet a lack of either of these desirable prerequisites should not completely
discourage the aspirant. Especially students from applied sciences are often highly
motivated to learn more about the mathematics behind the systems they encounter in
their respective discipline. In fact, I feel confident that this text will be useful to these
readers too, provided they either take for granted the presupposed mathematical facts
or (even better) look them up in a textbook and thus enhance their knowledge. With a
purpose in mind, investing in one’s mathematical skills is certainly worthwhile at any
level of proficiency!

In order to keep the text fluent, calculations and considerations which I consider
elementary are often stated in a brief form or skipped altogether. On a first or cursory
reading one may well proceed by just taking note of the facts presented, without pon-
dering on each of them. The conscientious reader, however, will use paper and pencil in
order to work out and carefully check the steps condensed into phrases like a straight-
forward calculation confirms, etc. This is particularly relevant to comprehending the
proofs: although these are really complete proofs containing all the essential ideas,
it may often be advisable to thoroughly reconsider the details in order to get a fully
elaborated argument. Exercises have been added in moderate number to each chap-
ter: while some of them are routine, others are challenges for the curious, providing
possible points from where to launch further studies. Throughout the whole book, the
reader may thus decide to what extent to delve into the matter. For all I know, it is only
personal commitment and interest covering also the sometimes technical details that
leads to a truly working knowledge of the field. Accordingly, I hope that the reader will
gain some inspiration from thoroughly pondering on specific problems of dynamics.
May you feel inspired to consult more advanced references and to penetrate more and
more the fascinating and incredibly multifarious world of dynamical systems!

This book has grown out of courses I have repeatedly given at Vienna’s University
of Technology. In turning the original notes into a serious textbook I received help
and advice from quite a number of people. To all of them I feel sincerely grateful. In
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particular, I was lucky to learn a lot about dynamics from Martin Bliimlinger, Klaus
Schmidt and Peter Szmolyan, who have let me benefit from their respective deep
knowledge of the field. Peter also read parts of the manuscript and provided a host
of corrections and improvements. For advice of both stylistic and general nature I am
enormously indebted to Wuddy Grienauer as well as to Paul G. Seitz. The splendid
illustration of Snakes and Ladders was kindly made available to me by Josie Porter and
Tim Walters. Last but not least, I feel deep gratitude to Manfred Karbe for the most
friendly and encouraging attention he patiently gave to this project.

Vienna, August 2001 Arno Berger



Contents

1 Introduction

1.1 Long-time behaviour of mechanical systems . . . . .. ... ... ..
1.2 Tterationofmaps . . . . . . . .. ... ... ...
1.3 Elementary stochastic processes . . . . . . . . ... ... ......

EXercises . . . . . . . ..

2.1 Hyperbolicity and bifurcations . . . . ... ... ... ... .....
2.2 How may simple systems become complicated ?. . . . . .. ... ..
2.3 Facing deterministicchaos . . . . .. ... ... ... ... ..

2.3.1 Symbolic dynamical systems . . . . . .. ... ... .....

2.3.2 Theemergenceofchaos . ... ... .............

2.3.3 Newton’s method for polynomials: acasestudy . . . . . . ..
2.4 Circle maps, rotation numbers, and minimality . . . . . . ... .. ..
2.5 Glimpsesofbilliards . . . ... ... ... ..............
2.6 Horseshoes, attractors, and natural extensions . . . . . . . ... ...
2.7 Toral maps and shadowing . . . . .. .. ... ............

EXercises . . . . . . ... e e,

3 Ergodic theory I. Foundations

3.1 The statistical pointof view . . . . . . . .. ... L.
3.2 Invariant and ergodic measures . . . . . .. ... ... L. ..
33 Ergodictheorems . . . . ... . ... ... ... ... ...,
34 Aspectsofmixing . . . . . . ... Lo
34.1 Mixingproperties . . . . . . . ...
34.2 Theconceptofentropy . . . . .. ... ... ... ......

Exercises . . . . . . . ... e

4 Ergodic theory II. Applications

4.1 The Frobenius—Perron operator . . . . . . ... ... .. .......
4.2 Asymptotic behaviour of densities . . . . . ... ... ... .....

14
18

20

20
27
31
31
37
43
48
54
61
68
75

79

79
84
94
109
110
112
122



X  Contents

4.3 Piecewise expanding Markovmaps . . . . . ... ... ... ... .. 145

4.4 Ashortlook at Markovchains . . ... ... ............. 156
4.4.1 Class structure, absorption probabilities, and hitting times . . 161

4.4.2 Recurrence and transience: dynamical classification of states . 164

4.4.3 The long-time behaviour of Markov chains . . . . . .. ... 167
Exercises . . . . .. .. ..., 176

5 The dynamical evolution of measures 179
5.1 Basicexamplesandconcepts . . . . .. ... ... ... ....... 179

5.2 Asymptotic stability . . . . . ... ... L 187

5.3 Back to geometry: fractal sets and measures . . . . ... ... .... 191
5.4 Threefinalexamples . . ... ... .................. 205
5.4.1 Searching for non-normal numbers . . . ........... 205

5.4.2 The fractal nature of Brownianpaths . . . . . ... ... ... 207

5.4.3 Patterns of congruence in the Pascal triangle . . . . . . . . . . 214
Exercises . . . . . . ... ... 217

A The toolbox 221
A.l Asurveyofnotations . . . ... .................... 221
A.2 Basic facts from measure theory . . . . ... ... ... ... .. 223
A3 Imtegrationtheory . . . .. .. ... ... ... ............ 226
A4 Conditional expectations . . . . . . ... ... .. ... ....... 230

B A student’s guide to the literature 232
Bibliography 237

Index 241



Chapter 1
Introduction

Even though defined in purely deterministic terms, dynamical systems from physics,
biology, economics and other applied sciences may behave in quite a complicated and
unpredictable manner, so that when looking at such systems we could easily get the
impression of watching an experiment of chance. However, as there is no notion of
chance in a completely deterministic setting, a seemingly erratic behaviour leads to
several fundamental questions. How does uncertainty come about in this context and
how does it affect our understanding of a system as a whole? What is the precise
meaning of the word chance and, most important, how can we describe its emergence
and implications? To pursue these questions and to find at least partial answers is the
aim of this book. On our way we shall encounter numerous examples which will allow
us to grasp the relevance of general notions and results. As this book primarily is about
mathematics, several technicalities will have to be elaborated in some detail later in
the text. In this introductory chapter, however, we are going to informally discuss a
number of simple examples that will serve as starting-points and motivation for our
further studies. The main point here is to observe how statistical and probabilistic
aspects become important for the analysis of dynamical systems.

1.1 Long-time behaviour of mechanical systems

Very simple mechanical systems may evolve to a surprisingly complex behaviour if
only they are observed for a sufficiently long period of time. We shall see and analyse
such types of dynamics in a host of examples throughout this book. To get a first
impression of the phenomena that may occur, let us start by looking at several billiard
systems. A couple of fundamental notions may comfortably be introduced in the realm
of these systems.

To explain what we mean by a billiard system let us consider a bounded open set
Q2 (the “table”) in the plane which is connected and has a piecewise smooth boundary
2. If we now put a small billiard ball somewhere on the table, make it move off
with velocity v € R?, v % 0 and assume that there is no loss of mechanical energy
whatsoever (no friction, perfectly elastic reflection at the boundary etc.), then the
resulting motion of the ball is easily described: inside €2 it moves with constant speed,
whereas at the boundary it is reflected in such a way that the angle of incidence equals
the angle of reflection. Since there is no loss of kinetic energy this motion goes on
forever.
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Let us first assume that the table 2 is rectangular with side-lengths a and b, respec-
tively (see Figure 1.1). If we make the ball move off at time ¢ = 0 with an angle
according to Figure 1.1, can we predict its position x (¢) for any ¢ > 0? In fact, nothing
could be simpler than this: observing that the projection of the ball’s motion onto
the x1- and x;-axis is given by a one-dimensional straight movement between walls
with velocities +v cos & and %v sin «, respec-
tively, we could explicitly write down a for-
mula for x(¢). It goes without saying that the
angle « has to be chosen in such a way that
the ball never hits a corner; most choices of
« will satisfy this condition. There are, how-
ever, more challenging questions to ask: Will
the trajectory eventually close, thus giving rise
to a periodic motion? What will happen, if the
trajectory fails to close? Can we — in the latter
case — find a region of the table which is never
hit by the ball?

To answer these questions we put our bil-
liard system into a more tractable form by
making the table twice as long and wide (cf. Figure 1.2). To benefit from this doubling
procedure we consider straight motions with constant velocity on the doubled table
subject to the following identification rule: for 0 < x; < 2a we consider the points
(x1, 2b) and (x1, 0) as two guises of the same point; analogously we identify (24, Xx2)
and (0, x,) for all 0 < xp < 2b. Concerning our straight motion this just says that
we reenter from the bottom (x, = 0) if we have gone through the top (xo = 2b)
and, analogously, reenter from the left if we have run out at the right. By means of

Figure 1.1. The rectangular table

exy
I9pI¢ | °IqelL
Rl( )R3
sldsT
N~ €xq
Ry

Figure 1.2. Each billiard trajectory uniquely corresponds to a straight line on the doubled table.

this identification and a repeated application of the reflections Ry, Rz, R3 indicated in
Figure 1.2 it is easy to see that each billiard trajectory within the rectangle £2 uniquely
corresponds to a trajectory of the straight motion on the doubled table. Thereby we
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realize that the trajectory on the original table will close if and only if
pasina —gbcosa =0 forsome (p, q) € 7, (p,q) #(0,0).

Periodicity will therefore be observed if either a/b tan « is a rational number or else
cose = 0. What happens if a/btan « is irrational? We cannot answer this question
right now, but later we shall see that in this case every trajectory fills the rectangular
table densely. In fact even more is true: we shall prove in Chapter Three that for
a/btana € R\Q the relation

. 1 [T area(Q)
lim 7/0 Lo(x(1))dr = — (1.1)

T—o0

holds for any rectangle Q C [0, a] x [0, b]; here 1y denotes the indicator function of
O (see Appendix A), so that the integrand equals one precisely if x(t) € Q and zero
otherwise. Observe that (1.1) essentially is a statistical statement about the behaviour
of the trajectory {x(¢) : ¢ > 0}. Indeed, since the quantity at the left is nothing else
but the asymptotic relative frequency of the ball being in Q, relation (1.1) may be
rephrased as follows: asymptotically, for a long time T of observation, the relative
frequency (“probability”) of the billiard ball finding itself in Q is given by the portion
of the whole table that is covered by Q. The larger Q is, the more often the ball will
be found there. This last result even holds for sets more general than rectangles. Yet is
it really obvious that in the long run all the regions depicted in Figure 1.3 are visited
with the same relative frequency?

Figure 1.3. In the long run each shaded region Q is visited with the same relative frequency 0.5.

Let us now turn towards the circular billiard, that is the billiard on a disc, which
probably has the simplest table with smooth boundary. From the left disc in Figure 1.4
it can be seen that the angle o enclosed by the billiard trajectory and the tangent to
the boundary 92 is the same at each point of reflection. As a consequence, the whole
billiard trajectory is contained in the closed annulus

Ay = {(x1,x2) : R?cos’ a < x? + x? < R?},
1 +x3

and each segment of the trajectory is tangent to the circle with radius R|cos «| concentric
to d€2 (see the billiard tables in Figure 1.4). As for the rectangular billiard there are
two types of behaviour a billiard trajectory may exhibit: if « /7 € Q then the trajectory
will close after a finite number of reflections, thus yielding a periodic motion. If on
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Figure 1.4. For the circular billiard the horizontal lines [0, 1[x{c} are invariant under the
associated billiard map Tp;)-

the other hand «/m is irrational then the trajectory densely fills the annulus Ay; and
we shall see that — in analogy to (1.1) —

dxydx;

1 (T 1
lim — | 1 1))dt = 1.2
TLmoo T /0 Q(x( )) 27 Rsinw /fQ \/xz i (1.2)
1

x% — R?2cos?«

for every not-too-complicated set Q € A, in this case.

Though elementary, a few observations are worth mentioning here. Firstly, (1.2)
may be rewritten as
1
lim —
T—oo T

T
/0 IQ(x(t))dtz/.‘/Q fau(x1, x2) dx1 dx

with the function f, : A, — R defined as

1

fa(x1,x2) ==

27 R sinw xl2 +x§ — R?2cos?2«

Evidently f, > 0 and f A, fu(x1, x2) dx1dxp = 1; in probabilistic terms f, therefore
is a density. As we shall have occasion to observe again and again throughout this
book, densities may be extremely useful for describing the long-term behaviour of
dynamical systems.

A second observation is that a billiard system inside a table £ whose boundary 92
is a single smooth closed curve naturally induces a map on 92x]0, [. To see this,
parametrize d<2 by arc-length, take (s, ) € 322x]0, [ and consider the billiard tra-
jectory which emanates from the point with arc-length coordinate s and which encloses
an angle a with the oriented local tangent (cf. Figure 1.4). It is natural then to assign
to (s, o) the corresponding data of the next impact. Without loss of generality we may
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normalize d€2’s arc-length to one so that we end up with a billiard map Ty which
maps [0, 1[x]0, 7 [ into itself. Since between any two reflection points the trajectory
is just a straight line, the billiard map essentially contains all the information about the
dynamics of the billiard system. In anticipation of our detailed studies in later chapters
we now look at a few examples which indicate that the long-time behaviour of Ty may
differ considerably, depending on the specific shape of the table under consideration.

For the circular billiard it is straightforward to give an explicit formula for Ty,
namely

o
Toin : (5, 0) > (S + ;(mod 1), oz)

forall (s, @) € [0, 1[x]0, 7 [. Itis a remarkable feature of this map that it does not alter
the second coordinate and thus maps the straight line [0, 1[x {ao} onto itself for any
ao € ]0, [ (see Figure 1.4). The restriction Tyin [0, 1[x{«o} May therefore be considered
amap on [0, 1[; it is in fact a rotation and thus the simplest example of a circle map, a
class of maps we shall deal with in Sections 2.4 and 3.2.

Admittedly, the circular billiard is easy to survey, and the need for a statistically
oriented analysis thereof may not be too pressing. A slight modification of the table
may, however, suffice to yield much more complicated dynamics of the associated
billiard map. Consider for example the table depicted in Figure 1.5 which differs from
a disk only by a rectangle inserted between the two halves of the disk. As can be seen
from Figure 1.5 this innocent surgery yields a billiard system quite different from the
circular one; traditionally it is referred to as the stadium billiard for its resemblance to
the shape of an athletic field. As is indicated by Figure 1.5, typical trajectories of the
stadium billiard do not show much regularity, neither do the orbits of individual points
under the associated billiard map Ti;;. In fact, a statistical approach is required to
demonstrate that there is a certain regularity in the long-time behaviour of this specific
billiard.

4 . :
+ N 10% iterations
T

Figure 1.5. The stadium billiard and a typical orbit of Ty (right)

The most basic statistical analysis certainly consists in drawing histograms of one
or a few orbits of the billiard map 7. To this end, let us divide the space [0, 1[x]0, 7 [
into a not-too-small number of squares S;. Then we fix a point x € [0, 1[x]0, 7[ and
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simply count how often Tbkm (x), i.e. the k-th iterate of x under Ty, happens to fall into

S; for 0 < k < n. More formally, we numerically evaluate the relative frequencies

#{0 <k <n:T&(x) €S}
n area(S;)

a;(x,n) =

for various values of n. What help can the quantities a; be for understanding the
dynamics of Tyin? Most basically, a; > 0 and

Zai(x, n) area(S;) = 1,

so that we may interpret the family (a;) as an approximation of a density. The larger
a;, the more often the iterates of x will visit S;. Finally, we expect these quantities to
tell us something about the long-time behaviour of Ty for n — oo. How will a; (x, n)
evolve as n — 00?

It turns out that the specific choice of x does not much affect the striking result
displayed in Figure 1.6: in the long run each of the quantities a; seems to converge!
After we will have developed the statistical point of view in Chapter Three we shall
not only be able to confirm this visual impression but also to explain the specific shape
of the limit in Figure 1.6. Additionally, we shall see how these insights lead to a
satisfactory description of the stochasticity inherent to the stadium billiard.

n=10° n=10° n=107

Figure 1.6. Empirical histograms drawn from the billiard map associated with the stadium
billiard

As a final example of a billiard system consider a table bounded by four quarters
of a circle curved inward (see Figure 1.7). Observe that this table is not convex. As a
consequence, Tpi no longer is a continuous map, and it is not defined at the vertices
of the table. Ignoring these technical difficulties for the time being we can perform a
similar analysis as above, and we find that this billiard is by no means simpler than the
stadium billiard (Figure 1.7). In fact, the mechanism which we can see at work here
consists in an exponential instability of individual trajectories resulting in a sensitive
dependence on initial conditions of the whole system. It is this latter effect which
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nowadays is prevalently considered as an essential ingredient of the notion of chaos,
especially among physicists. Later we shall give a rigorous formalization, but for the
specific billiard considered here we may informally discuss right away what sensitive
dependence on initial conditions can mean for practical purposes.

500 iterations 5000 iterations
] o

Figure 1.7. A trajectory for the dispersing billiard (left); the corresponding Ty;jj-orbit is likewise
irregular.

Consider two billiard trajectories emanating from the same point in slightly different
directions. Let § denote the angle between these two directions; we consider § as a
perturbation parameter which is very small in absolute value. As a result of this
small perturbation the two trajectories hit the boundary 32 at different points which
are cé apart where ¢ denotes a positive number depending on the local geometry of
the boundary (see Figure 1.8). A heuristic argument shows that after reflection the
directions of the trajectories will differ by an angle (1 + 2¢)é. Since |§| is very small
this augmentation does not look critical. However, observe that the actual difference
between the directions is multiplied by a factor larger than one at each reflection. As
a dramatic consequence, small perturbations will grow more or less exponentially. In
other words, even the smallest deviation § will cause trajectories to significantly diverge
after a frighteningly small number of reflections. Figure 1.8 provides a visualization
of this effect with § = 1077: the two trajectories are close-by only for the first eleven
reflections and then diverge completely.

Billiards like the one discussed here have been termed dispersing, a notion being
self-explanatory by now. In the light of the above discussion we expect such billiards
to behave chaotically in the long run. As we shall see in Chapter Three this is true in a
precise sense, though working out the mathematical details is rather demanding.

Throughout this book we shall encounter and carefully analyse the effect of sensitive
dependence on initial conditions for many systems. The practical impact of this effect
has very clearly been seen already by the founders of modern dynamical systems theory.
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Figure 1.8. This billiard shows sensitive dependence on initial conditions.

In 1908 Poincaré wrote:

A very small cause, which escapes us, determines a considerable effect
which we cannot ignore, and we then say that this effect is due to chance.

As a consequence, our ability to predict the future evolution of individual trajectories
(orbits) of such systems is tremendously limited. The best we can wish for in this
situation is a meaningful statistical perspective of the dynamics, and we are going to
develop this point of view from Chapter Three onward.

The last mechanical system we are going to introduce here has its roots in the
work of Lagrange on celestial mechanics. Consider a system of d + 1 points labelled
0,1, ...,d that perform a planar motion according to the following rule: the point 0
is fixed while for k = 1, ..., d the point labelled k circles around the point labelled
k — 1 with radius r; and (absolute) angular velocity wg. One could think of a family of
celestial bodies circulating around each other with constant angular velocities. What
we are interested in here is the motion of the last point which may concisely be described
by means of complex numbers according to

2(t) = a1 + ...+ age' @’

withay € C, |ax| = ri fork = 1,...,d. As might be imagined this motion can be
quite complicated and non-uniform (especially for large d; cf. Figure 1.9). Writing
z(t) = r(1)e’*® Lagrange asked whether an (asymptotic) average angular velocity
Weo = liM;_s 00 @(2)/t could be assigned to that system. Here the angle ¢(¢) is
assumed to be continuous unless z(¢) = 0; in the latter case it may exhibit a jump of
an absolute value of at most 7r. If it exists at all, the quantity we, will describe on
average the long-time behaviour of the system of rotating points. Lagrange found that



