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Preface

This book is intended to be an introduction to mathematical science, par-
ticularly the theoretical study from the viewpoint of applied analysis. As
basic materials, vector analysis and calculus of variation are taken, and
then Fourier analysis is introduced for the eigenfunction expansion to jus-
tify. After that, statistical method is presented to control the mean field of
many particles, and the mathematical theory to linear and nonlinear partial
differential equations is accessed. System of chemotaxis is a special topic in
this book, and well-posedness of the model is established. We summarize
several mathematical theories and give some references for the advanced
study. We also picked up some materials from classical mechanics, geom-
etry, mathematical programming, numerical schemes, and so forth. Thus,
this book covers some parts of undergraduate courses for mathematical
study. It is also suitable for the first degree of graduate course to learn
the basic ideas, mathematical techniques, systematic logic, physical and
biological motivations, and so forth.

Most part of this monograph is based on the notes of the second author
for undergraduate and graduate courses and seminars at several universi-
ties. We thank all our students for taking part in the project.

December 2003
Takasi Senba and Takashi Suzuki
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Chapter 1

Geometric Objects

Some kind of insects and amoeba are lured by special chemical substances
of their own. Such a character is called chemotaxis in biology. For its
formulation, some mathematical terminologies and notions are necessary.
This chapter is devoted to geometric objects.

1.1 Basic Notions of Vector Analysis

1.1.1 Dynamical Systems

Movement of a mass point is indicated by the position vector € = z(t) € R3
depending on the time variable ¢ € R. If m and F denote its mass and
the force acting on it, respectively, Newton’s equation of motion assures the
relation

m—— = F, (1.1)

where ‘fi—zgl stands for the acceleration vector. If n points x; = z(t) (i =

1,2,---,n) are interacting, then they are subject to the system
d*z; .
mimz—l-=Fi (i=1,2,---,n),

simply written as

i = f(z,i,1) (1.2)



2 Geometric Objects

with z = (x1, €2, -+, x,) € R,
I= d’z and &= de
o dt2’ T odt’

It is sometimes referred to as the deterministic principle of Newton, and
under reasonable assumptions on f, say, continuity in all variables (z, &, )
and the Lipschitz continuity in (z,%), there is a unique solution z = z(t)
to (1.2) locally in time with the prescribed initial position z(0) = xo and
the initial velocity £(0) = zo. At this occasion, let us recall that the initial
values

z(0) = zo and z(0) = 2o

provide equation (1.2) with the Cauchy problem.
In some cases the degree of freedom is reduced, as z = z(t) € R or
z = z(t) € R2. For example,
i=—k’z

with £ = z(t) € R is associated with the oscillatory motion of a bullet
hanged by spring, and its solution is given by

z(t) = zo cos kt + Zo sin kt/k.

Although very few solutions to (1.2) are written explicitly even for the case
of z = z(t) € R,

is the simplest but general form of it. In this case
T-g# wd U@ =- [ rd

are referred to as the kinetic energy and the potential energy, respectively.
Then, the total energy is given by

E=T+U=%12+U(x)

so that it is a function of (z,z), denoted by E = E(z,z). If z = z(t) is a
solution to (1.3), then it holds that

& Ba(0),£(t)) = 5 — f(z)i = £ (2 - f(z)) = 0,
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so that E (z(t),Z(t)) is a constant. This fact is referred to as the conserva-
tion law of energy.
System (1.3) is equivalent to £ = y and § = f(x), or

% ( ‘; ) = ®(z,y) (1.4)
with ®(z,y) = *(y, f(z)). Because the right-hand side does not include
the variable ¢ explicitly, system (1.4) is said to be autonomous, and its
solution is illustrated as a curve in z — y plane. Energy conservation
E (z(t), z(t)) = E(xo,Zo) guarantees the existence of the solution globally
in time if the potential U = U(z) is coercive, which means that |z| — 400
implies U(x) — +00. Then, each

O = {(z(1),£(t)) | t € R}

is called an orbit, which coincides with the curve E = %yz + U(z), where
EFE=F (xo,io).

Because of the uniqueness of the solution to the Cauchy problem of
(1.3), the orbit never intersects by itself. However, it may be a point,
which corresponds to the zero of ®, that is, y = 0 and f(z) = —U’(z) = 0.
It is referred to as the equilibrium point. Each equilibrium point (Zo,0) is
stable or unstable if g is a local minimum or a local maximum of U = U (),
respectively. This means that if the initial value (zo, o) is close to (o, 0),
then the solution to (1.3) stays near or away from it.

The solution to (1.4) may be written as

(18)-(:3)

y(t) “\ %0

for *(x(0),y(0)) = *(zo,#0), with the mapping T} : R2 — R2 defined for

each ¢ € R. Then the family {T;},.g induces the continuous mapping
T:-R2xR — R?

by

T (*(z,y),t) =Tt( '; )

This family is provided with the properties that Tp = Id, the identity
operator, and Ty4s = T; o T for t, s € R, with o denoting the composition
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of operators. Then, we call {T}},.g the dynamical system.

(o)

% x(s+1)
Yorer et ys+1) )

()

Fig. 1.1

For z = z(t) € R3 in (1.3), we say that f = f(z) is a potential field if
oU 0z,
f=—-\| oU/dz, (1.5)
6U/8z3
holds with a scalar function U = U(z;,z2,23). In use of the gradient
operator
6/8.’171
V=| 98/ozy |,
6/8.’173
relation (1.5) is written as
f=-VU.
Then we can define the total energy by
. 1 .9
B(z,#) = 3 [ + U(z),
where |Z| denotes the length of the velocity vector £ € R3. Similarly to

the one-dimensional case, this E is a quantity of conservation. In fact, if
z = z(t) is a solution to (1.3) it follows that

%E (z(t), 2(t)) = & - (& + VU(z)) =0,
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where - denotes the inner product in R3. However, this law of the conser-
vation of energy is not sufficient to control the orbit O in x — i space, which
is now identified with RS.

Exercise 1.1 Illustrate some orbits to (1.3) for z = z(t) € Rin = —
plane, when the potential energy is given by U(z) = %z“ - %xz. Seek all
equilibrium points and judge their stability. Examine the same question
for U(z) = £322.

1.1.2 OQwuter Product

Here, we take the notion of vector analysis; outer product of the vector,
gradient of the scalar field, and divergence and rotation of the vector field.
Throughout the present chapter, three-dimensional vectors are denoted by

a, b, c, -, while a, b, ¢, - - - indicate scalars. The canonical basis of R3 is
given by
1 0 0
1= 0 y ] = 1 ) k= 0 )
0 0 1

which are arranged to form a right-handed coordinate system in three di-
mensional space R?. The length of a is denoted by |a/|, and a - b stands for
the inner product of @ and b. That is, @ - b = |a| - |b| cos 8, where 8 is the
angle between a and b. If

a)
a= az = a1i+a2j + azk (1.6)
as

and

by
b= by | =byi+boj+bsk (1.7)
b3

represent those vectors by their components, it holds that @ - b = a;b; +
azbs + azbs.

The outer product of @ and b is the vector denoted by a x b satisfying
the following property.
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1 Its length is equal to the area of the parallelogram made by a and b.
It is perpendicular to a and b.
3 a,b, and a x b are right-handed.

[

axp
laxsl
T
4 b
Fig. 1.2

Then, we have the following.

Theorem 1.1 The operation (a,b) — a X b is subject to the following
laws.

1 (commutative): bxa=-axb.
2 (associative): c(a x b) = (ca) x b.
3  (distributive): ax (b+c)=axb+axc.

Proof. We shall show the distributive law because the other laws are
obvious. First, from the associative law we may suppose that |a| = 1. We
take the plane 7 containing the origin whose normal vector is a. Look down
7 so that a is upward. Let b, ¢/, and (b + ¢)’ be the projections to 7 of b,
¢, and b + c, respectively. Then, by the definition we have

axb=axb, axc=axc,
and
ax(b+c)=ax(b+c).
Here, we have (b + ¢)’ = b’ + ¢/, so that the equality

ax((b+c)=axb+axc,



