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Preface

The theory of classical matrix Lie algebras can be viewed from at least two
related but different perspectives. On the one hand, the special linear, orthogonal
and symplectic Lie algebras form four infinite series, A,, By, Cpn, Dy, which to-
gether with five exceptional Lie algebras, Eg, E7, Eg, Fy, G, comprise a complete
list of the simple Lie algebras over the field of complex numbers. The structure of
these Lie algebras is uniformly described in terms of certain finite sets of vectors
in a Euclidean space called the root systems. The symmetries of the root systems
play a key role in the representation theory of all simple Lie algebras providing
the dimension and character formulas for the representations. On the other hand,
the matrix realizations of the classical Lie algebras allow some specific tools to be
used for their study which are not always available for the exceptional Lie algebras.
The theory of Yangians and twisted Yangians which we develop in this book is one
of such tools bringing in new symmetries and shedding new light on this classical
subject.

The Yangians and twisted Yangians are associative algebras whose defining re-
lations are written in a specific matrix form. We describe the structure of these
algebras and classify their finite-dimensional irreducible representations. The re-
sults exhibit many analogies with the representation theory of the classical Lie
algebras themselves, including the triangular decompositions of the (twisted) Yan-
gians and the parametrization of the representations by their highest weights. In
the simplest cases explicit constructions of the irreducible representations are also
given. Then we apply the Yangian symmetries to the classical Lie algebras. The ap-
plications include constructions of several families of Casimir elements, derivations
of the characteristic identities and Capelli identities, and explicit constructions of
all finite-dimensional irreducible representations of the classical Lie algebras via
weight bases of Gelfand—Tsetlin type.

Let us discuss the relationship between the classical Lie algebras and the
(twisted) Yangians in more detail. The term Yangian was introduced by V. G. Drin-
feld (in honor of C. N. Yang) in his fundamental paper (1985). In that paper,
Drinfeld also defined the quantized Kac—Moody algebras, which together with the
work of M. Jimbo (1985), who introduced these algebras independently, marked the
beginning of the era of quantum groups. The Yangians form a remarkable family
of quantum groups related to rational solutions of the classical Yang-Baxter equa-
tion. For each simple finite-dimensional Lie algebra a over the field C of complex
numbers, the corresponding Yangian is defined as a canonical deformation of the
universal enveloping algebra U(a[z]) for the polynomial current Lie algebra a|z].
Importantly, the deformation is considered in the class of Hopf algebras, which
guarantees its uniqueness under some natural homogeneity conditions. Another
presentation of the Yangian for a was given later by Drinfeld (1988).

xi
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A few years earlier, the algebra, which is now called the Yangian for the gen-
eral linear Lie algebra gl and denoted by Y(gly), was considered in the work of
L. D. Faddeev and the St. Petersburg (Leningrad) school. The defining relations
of the Yangian Y(gly) can be written in the form of a single ternary (or RTT)
relation on the matrix of generators. This relation has a rich and extensive back-
ground. It originates from the quantum inverse scattering method; see for instance
L. A. Takhtajan and Faddeev (1979), P. P. Kulish and E. K. Sklyanin (1982), and
Faddeev (1984). The Yangians were primarily regarded as a vehicle for producing
rational solutions of the Yang-Baxter equation; cf. Drinfeld (1985). Conversely,
the ternary relation is a powerful tool for studying quantum groups themselves;
see e.g. N. Yu. Reshetikhin, Takhtajan and Faddeev (1990). The Hopf algebra
structure of Y(gly) can also be conveniently described in a matrix form.

From the algebraic point of view, the algebra Y(gly) and the closely related
Yangian Y(sly) for the special linear Lie algebra sly are exceptional in the fol-
lowing sense. For any simple Lie algebra a, the corresponding Yangian contains
the universal enveloping algebra U(a) as a subalgebra. However, only in the case
a = sly does there exist a homomorphism from the Yangian to U(a) (the evaluation
homomorphism) which is identical on the subalgebra U(a) (Drinfeld, 1985). This
property plays a key role in the applications of the Yangians to the conventional
representation theory. In this book we concentrate on these distinguished algebras
Y(gly) and Y(sly).

We will use the symbol gy to denote either the orthogonal Lie algebra oy or
symplectic Lie algebra sp,, assuming N = 2n even for the latter. For each of these
Lie algebras G. Olshanski (1992) introduced another algebra which he called the
twisted Yangian. We will denote it by Y(gn). When a = gy, the twisted Yangian
Y(gn) should not be confused with the Yangian for gy defined by Drinfeld. The
latter Yangian will not be considered in the main exposition of the present book;
see, however, Examples 2.16.2 and 4.6.1.

The classical Lie algebra gy can be regarded as a fixed point subalgebra, of an
appropriate involution ¢ of the Lie algebra gl . Then the twisted Yangian Y(gy)
can be defined as a subalgebra of Y(gly). The algebra Y(gn) is a deformation of
the universal enveloping algebra for the twisted polynomial current Lie algebra

gin[z]” = { A(2) € gly[2] | 0(A(2)) = A(=2) }.
This is not a Hopf algebra deformation. However, the twisted Yangian Y(gy)
contains the universal enveloping algebra U(gy) as a subalgebra, and there exists
a homomorphism Y(gn) — U(gn) identical on the subalgebra U(gy). It is called
the evaluation homomorphism by analogy with the gl case. Moreover, the twisted
Yangian turns out to be a (left) coideal of the Hopf algebra Y(gly).

Similar to the Yangian for gl, the twisted Yangians can be equivalently pre-
sented by generators and defining relations which can be written as a quaternary (or
reflection) equation for the matrix of generators, together with a symmetry relation.
Relations of this type appeared for the first time in the papers by I. V. Cherednik
(1984) and Sklyanin (1988), where integrable systems with boundary conditions
were studied.

This matrix form of the defining relations for the Yangian and the twisted
Yangians allows special algebraic techniques (the so-called R-matriz formalism) to
be used to describe the structure and to study representations of these algebras.
On the other hand, the defining relations can also be observed inside the enveloping
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algebras. To be more precise, consider the general linear Lie algebra gly with its
standard basis E;j, i,j = 1,..., N. The commutation relations are given by

(0.1) [Eijy Bri] = 0x3Ei — 031 Erjs

where §;; is the Kronecker delta. Introduce the N x N matrix E whose ij-th entry
is E;;. The matrix elements of the powers of the matrix E are known to satisfy the
relations

(0.2) [Eij, (E*)rt] = 0k (E*)it — 0it(E*)i;-

These, in particular, imply that the traces of powers of E are central elements of
the universal enveloping algebra U(gly) known as the Gelfand invariants. The
following generalization of (0.2) which can be verified by induction, appears to be
less known:

0.3)  [(B™)ij, (B )] = (B )ijs (B ] = (B")ij (Bt = (B )ig (BT )ar,
where 7,5 > 0 and E° = 1 is the identity matrix. The definition of the Yangian
Y(gly) can be motivated by these relations: replacing (E");; by an abstract gen-

erator tg-‘) we obtain the Yangian defining relations; see (1.1) below. Introducing
the generating series

oo
ei(u) = 6i + Y _(EM)iju™",
r=1
where u is a formal (complex) parameter, we can rewrite (0.3) in the form
(0.4) (u =) [eij (u), em(v)] = ex;j(u) ei(v) — ex;(v) ea(w)
which is equivalent to the RTT relation; see (1.19) below.
Alternatively, the generators of the Yangian can be realized as the Capelli

minors. Keeping the notation E for the matrix of the basis elements of gl,, we
introduce the Capelli determinant

(0.5) det(1+FEu™") = Z sgnp-(1+Eu)pay1 - 1+ E(w—N+1)"")pw,n-
PESN

When multiplied by w(u—1) - - (u— N +1) this determinant becomes a polynomial
in u whose coefficients (with the exception of the leading coefficient 1) constitute a
family of algebraically independent generators of the center of U(gly). The value
of this polynomial at u = N —1 is the distinguished central element whose image in
a natural representation of gly by differential operators is given by the celebrated
Capelli identity. For a positive integer M < N introduce the subsets of indices
B,={i,M+1,M+2,...,N} and for any 1 < 4,j < M consider the Capelli minor
det(1+ Eu™")g,B, = &ij + ci(]-l)u'1 + ci(jz)u_2 +

defined as in (0.5), whose rows and columns are respectively enumerated by B; and
B;. These minors turn out to satisfy the Yangian defining relations; i.e., there is
an algebra homomorphism

Y(oly) = Ulgly),  t3) =D
These two interpretations of the Yangian defining relations (which will reappear
in Sections 1.4 and 1.12) indicate a close relationship between the representation
theory of the algebra Y(gly) and the representation theory of the general linear Lie
algebra.
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Similar calculations applied to the orthogonal and symplectic Lie algebras lead
to the defining relations for the corresponding twisted Yangians. For instance,
consider the orthogonal Lie algebra oy as the subalgebra of gl spanned by the
skew-symmetric matrices. The elements F;; = E;; — Ej; with 1 < j form a basis of
on. Introduce the N x N matrix F' whose ¢j-th entry is F;;. The matrix elements
of the powers of the matrix F' are known to satisfy the relations

(0.6) (Figy (F* )] = 0k (F*)ir — 6 (F*)iej — Gin(F'*) ju + 815 (F® )i

A counterpart of (0.3) for the elements (F'");; can be explicitly written down.
Introduce the generating series

N — o
=0+ 3o+ 25
Then we have the relations for these series analogous to (0.4):
(0.7) (u? = v?) [fij(u), fruu ()] = (u+ ) (fij(w) fa(v) — fr;(v) fu(w))
— (u =) (fi(w) f1(v) = fri(v) fij(u))
+ fri(w) f1(v) = fri(v) fia(u).

This motivates the defining relations of the twisted Yangians; see (2.6) below. They
also include a symmetry relation which reflects the fact that the matrix F' is skew-
symmetric.

We now describe the contents of the book in more detail. Chapters 1 and 2
contain a detailed exposition of the algebraic properties of the Yangian Y(gly) and
the twisted Yangian Y(gn). We develop the R-matrix techniques as a powerful
instrument to investigate the structure of these algebras. The key results there
are the constructions of special formal power series called the quantum determi-
nant and the Sklyanin determinant originating from the works of A. G. Izergin and
V. E. Korepin (1981), Kulish and Sklyanin (1982), and Olshanski (1992) (more de-
tailed discussions of the origins of these constructions and other results contained
in this book can be found in the bibliographical notes at the end of each chap-
ter). The coefficients of these power series generate the centers of the Yangian and
twisted Yangian, respectively. The quantum Liouville formula, which is originally
due to M. L. Nazarov (1991), explicit formulas for the quantum determinant and
the Sklyanin determinant, as well as factorizations of these determinants will be
important for the applications to the corresponding classical Lie algebras.

In Chapters 3 and 4 we prove classification theorems for the irreducible finite-
dimensional representations of the algebras Y(gly) and Y(gun), respectively. For
the Yangian Y(gly) the classification results are a part of the Drinfeld theorem
(1988). Our approach employs the RTT presentation of the Yangian, and it is
based on the original work of V. O. Tarasov (1985, 1986). Note that an alternative
exposition of the Yangian representation theory was given in the book by V. Chari
and A. Pressley (1994, Chapter 12), whose methods rely on the Drinfeld presen-
tation of the Yangians. In Chapter 3 we give a proof of the isomorphism theorem
between the two presentations of Y(gly) following J. Brundan and A. Kleshchev
(2005). For both the Yangian and twisted Yangians we give a complete description
of the irreducible finite-dimensional representations in terms of their highest weights
and Drinfeld polynomials. In the simplest case N = 2 explicit constructions of all
such representations as tensor products of the evaluation modules are also given.
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Chapters 5 and 6 are devoted to explicit constructions of finite-dimensional
irreducible representations of the Yangian Y(gly). For a wide class of such repre-
sentations it is possible to construct a basis and produce explicit formulas for the
matrix elements of the generators of the Yangian in this basis (Chapter 5). The
crucial observation here is the fact that the lowering operators for the reduction
Y(gly) | Y(gly_1) can be written in terms of quantum minors. This basis may be
regarded as a generalization of the original basis of I. M. Gelfand and M. L. Tsetlin
(1950) for the representations of the Lie algebra gly. The techniques of lower-
ing operators are developed further in Chapter 6, where we prove an irreducibility
criterion for tensor products of the Yangian evaluation modules. An essential in-
gredient here is the fusion procedure for the symmetric group due to Cherednik
(1986), which we also discuss in detail. It allows us to apply Weyl’s tensor ap-
proach to the Yangian evaluation modules and realize them as submodules in the
tensor products of the vector representations of the Lie algebra gl,. This makes it
possible to establish an important binary property for the tensor product modules
due to Nazarov and Tarasov (2002).

In the remaining part of the book (Chapters 7-9) we consider various appli-
cations of the Yangian theory to the classical Lie algebras. Taking the images of
the central elements of the (twisted) Yangian onto the corresponding classical en-
veloping algebra with respect to the evaluation homomorphism, we get Casimir
elements for the corresponding Lie algebra. Several families of Casimir elements
are discussed in Chapter 7. Many of them are well known; some have appeared
quite recently. The Yangian perspective provides a unifying picture of all these
families and relations between them. We also consider the images of the Casimir
elements under the natural representations of the Lie algebras in the differential
operators, thus providing various generalizations of the classical Capelli identity.
These include the higher Capelli identities originally discovered by A. Okounkov
(1996), which are related to a distinguished linear basis of the center of U(gly)
formed by the quantum immanants.

Chapter 8 contains an account of the centralizer construction, which was the
original motivation for Olshanski to discover the twisted Yangians. In order to
explain the main ideas of the construction and its applications to the weight bases
in Chapter 9, consider a complex reductive Lie algebra g and let a C g be a
reductive subalgebra. Suppose that V' is a finite-dimensional irreducible g-module
and consider its restriction to the subalgebra a. This restriction is isomorphic to a
direct sum of irreducible finite-dimensional a-modules W), which occur with certain
multiplicities m,,

V.=2@® m,W,.

If the decomposition is multiplicity-free (i.e., m, < 1 for all u) and each W, is
provided with a basis, then it can be used to get a basis of V' as the union of the bases
of the spaces W, which occur in the decomposition. This was a key observation
for the constructions of the bases for the representations of the general linear and
orthogonal Lie algebras given by Gelfand and Tsetlin (1950). Alternatively, if the
decomposition is not necessarily multiplicity-free, we can interpret it as the vector
space isomorphism

(0.8) Vg U, oW,
n
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where
U, =Homg(W,,V), dim U, = m,,.

It is well known that the vector space U, is an irreducible module over the algebra
C(g, a) = U(g)®, the centralizer of a in the universal enveloping algebra U(g). Now,
if some bases of the spaces U, and W, are given, then the decomposition (0.8)
yields the natural tensor product basis of V. The general difficulty of this approach
is the complicated structure of the algebra C(g, a). As was observed by Olshanski,
for each pair of the classical Lie algebras

(g’ a) = (QIN» QIM)’ (BN,QM)a
there exist algebra homomorphisms
(0.9) Y(gly_n) = Cloly, 8la), Y(gn-m) — Clgn, 8m)-

These homomorphisms turn out to be consistent for different values of M and N
provided the difference N — M is fixed, which allows one to embed the (twisted)
Yangian into a projective limit of the centralizers. The structure of the “limit”
algebras is much simpler than that of the corresponding centralizers C(g,a): the
(twisted) Yangian can be presented by quadratic and linear defining relations. Fur-
thermore, the C(g, a)-module U, in (0.8) can be equipped with the structure of a
representation of the Yangian or twisted Yangian, respectively, via the homomor-
phisms (0.9). Luckily, in the case N — M = 2 the Y(gz)-module U, admits an
extension to a module over the Yangian Y(gl,). This fact plays a key role in the
construction: using the embedding

Y(gly) C Y(gly)

we can get a natural basis of Gelfand—Tsetlin type for the Y(gl;)-module U, and
then, by induction, a weight basis of the representation V' of the orthogonal and
symplectic Lie algebra. Moreover, the matrix elements of the generators of the Lie
algebras can be written down in an explicit form.

On the other hand, the (twisted) Yangian modules U,, emerging from the cen-
tralizer construction give rise to a natural class of skew representations. These
are described in Chapter 8 for the Yangian case, where we calculate their highest
weights, Drinfeld polynomials and the Gelfand—Tsetlin characters. The skew repre-
sentations of the twisted Yangians are considered in Chapter 9 in connection with
the weight bases for representations of the orthogonal and symplectic Lie algebras.

The basis vectors of these representations are expressed explicitly in terms of the
lowering operators. We describe these operators in the context of the Mickelsson
algebra theory developed by D. P. Zhelobenko (1990, 1994). A brief account of
this theory is given in the beginning of Chapter 9. The lowering operators were
first used by J. G. Nagel and M. Moshinsky (1964) to construct the Gelfand—
Tsetlin bases for the representations of gly. A similar construction of the bases
for the orthogonal case was produced by S. C. Pang and K. T. Hecht (1967) and
M. K. F. Wong (1967). J. Mickelsson (1972) gave some formulas for basis vectors of
the representations of the symplectic Lie algebra as ordered products of the lowering
operators. However, the action of the Lie algebra generators in such a basis does
not seem to be computable. The reason is the fact that, unlike the cases of gl and
oy, the lowering operators do not commute so that the basis depends on the chosen
ordering. A “hidden symmetry” has been needed to make a natural choice of the
appropriate combination of the lowering operators. That symmetry was provided
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by the action of the twisted Yangian Y(sp,) on the homomorphism space Uy, in
(0.8), and this action can be written in terms of the lowering operators. The basis
of the representation of sp,,, is then obtained by induction with the use of the chain
of subalgebras

Spy Cspy C -+ - C 5Py,

The same method can be applied to the pairs of orthogonal Lie algebras where
we use the “two step reductions” oy | ony_o instead of the restrictions of the
representations of on to the subalgebra oy_; used by Gelfand and Tsetlin. To
compare the two constructions, note that the basis of Gelfand and Tsetlin lacks
the weight property; i.e., the basis vectors are not eigenvectors for the Cartan
subalgebra. The reason for that is the fact that the restrictions oy | o —1 involve
Lie algebras of different types (B and D) and the embeddings are not compatible
with the root systems. In the new approach we use instead the chains

02C04C--Co0gyn and 03C05C - C O2pq1-

The embeddings here “respect” the root systems so that the bases possess the
weight property in both the symplectic and orthogonal cases. However, the new
weight bases, in their turn, lack the orthogonality property of the Gelfand—Tsetlin
bases: the latter are orthogonal with respect to the standard inner product in the
representation space.

At the end of each chapter we give brief bibliographical comments pointing
towards the original articles and give further references. This book was intended
to be an introductory text on the Yangian theory and its applications, and so the
list of topics covered here is by no means complete. In particular, we do not dis-
cuss in detail the Bethe subalgebras of the (twisted) Yangians (see Section 1.14 for
the definition and some basic properties in the Yangian case). These are commu-
tative subalgebras playing an important role in the theory of quantum integrable
models in relation with the Bethe ansatz; see e.g. Takhtajan and Faddeev (1979),
A. N. Kirillov and Reshetikhin (1986), Sklyanin (1992), and Nazarov and Olshanski
(1996). The Drinfeld functor connecting the representation theory of the degen-
erate affine Hecke algebras with that of the Yangians is not considered either; see
Drinfeld (1986), T. Arakawa and T. Suzuki (1998), Arakawa (1999), S. Khoroshkin
and Nazarov (2006, 2007). An application of this functor leads to the character
formulas for the finite-dimensional irreducible representations of Y(gly) express-
ing the characters in terms of the Kazhdan—Lusztig polynomials, as computed by
Arakawa (1999); see also Brundan and Kleshchev (2007).

The Yangians, as well as their super and g-analogues, have found numerous
applications in different areas of physics, including the theory of integrable models
in statistical mechanics, conformal field theory, and quantum gravity. We do not
discuss them in the book, although we give some references in the Bibliography
to indicate at least a few directions for such applications. Some versions of the
theorems proved in the book hold for other types of algebras, in particular, for the
quantized enveloping algebra Uy (gl ) and the quantum affine algebra Uq(a[ ~). We
briefly discuss these versions in the examples which follow each chapter, and we
also formulate some open problems there.

We have tried to keep the exposition as self-contained as possible relying only
on the basic facts of the Lie algebra representation theory; see e.g. J. E. Humphreys
(1972), W. Fulton and J. Harris (1991), R. Goodman and N. R. Wallach (1998).
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However, some applications in Chapters 6-9 use a few results from the representa-
tion theory of the symmetric group, theory of symmetric functions, and the Mick-
elsson algebra theory. Appropriate references are given in those chapters. The
part of the exposition devoted to the Yangian Y(gly) can be read separately. The
corresponding results are contained in Chapters 1, 3, 5, 6 and the respective parts
of Chapters 7 and 8. Throughout the book we use the standard notation Z and
C to indicate the sets of integers and complex numbers, respectively, while Z is
used to denote the set of nonnegative integers. The vector spaces and algebras are
considered over the field of complex numbers, except for a few examples, where
some extensions of C are needed.

I am pleased to thank my colleagues and the participants of the Algebra Semi-
nar at the University of Sydney for many encouraging discussions. My thanks also
extend to Yuly Billig, Alexei Bondal, Tony Bracken, Ivan Cherednik, Vladimir Drin-
feld, Boris Feigin, William Fulton, Vyacheslav Futorny, Mark Gould, Alexei Isaev,
Minoru Itoh, Gordon James, Anthony Joseph, Sergei Khoroshkin, Anatol Kirillov,
Tom Koornwinder, Alan Lascoux, Bernard Leclerc, Masatoshi Noumi, Andrei Ok-
ounkov, Sergei Ovsienko, Andrew Pressley, Pavel Pyatov, Eric Ragoucy, Arun Ram,
Nicolai Reshetikhin, Vladimir Retakh, Bruce Sagan, Paul Sorba, Alexander Stolin,
Vitaly Tarasov, Jean-Yves Thibon, Valeri Tolstoy and T6ru Umeda for discussions
of various aspects of the theory during the last few years. I am especially grateful
to Alexandre Alexandrovich Kirillov, my first representation theory teacher, and
to Grigori Olshanski, who introduced me to the Yangians. My long-term collabo-
ration with Maxim Nazarov and Grigori Olshanski on various projects related to
the Yangians and classical Lie algebras has lead to several results and constructions
which are discussed in this book. I express my deep gratitude to both of them.

Alexander Molev
Sydney, August 2007
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CHAPTER 1
Yangian for gly

As we pointed out in the Preface, although the discovery of the Yangians was
motivated by the quantum inverse scattering theory, the Yangian defining relations
can be “observed” from a purely algebraic viewpoint. We regard (0.3) as an alge-
braic motivation for the definition of the Yangian for the general linear Lie algebra
gly. We demonstrate that the defining relations can be written in a matrix form
which provides a starting point for special algebraic techniques to study the Yan-
gian structure. These techniques play an essential role in the construction of the
quantum determinant and description of the center of the Yangian.

1.1. Defining relations

DEeFINITION 1.1.1. The Yangian for gl is a unital associative algebra over

1) 42 where ¢,57 = 1,...,N, and the

C with countably many generators Cij s tijlaee

defining relations

(1.1) [t(r+1) t(s)] [tg;),t s+1)] tir]) ES) t(S) Elr)’
where 7,s =0,1,... and t(o) = 6;;. This algebra is denoted by Y(gly). |

Introducing the formal generating series
(1.2) tiy (w) = 8 + 5w + DU+ € Y(gly) [,
we can write (1.1) in the form
(1.3) (u =) [tij (w), tir (v)] = tiej (u) ta(v) — tr;(v) ta(u);

the indeterminates u and v are considered to be commuting with each other and
with the elements of the Yangian.
The following is an equivalent form of the defining relations of the algebra

Y(gly)-

PROPOSITION 1.1.2. The system of relations (1.1) is equivalent to the system

min{r,s}
(1.4) [tg), t(s)] Z (tg;—l)tl(lr+s—a) _ tfg}ﬂ_a)t,(»f‘l))-
a=1

PRrROOF. Observe that the multiplication of both sides of (1.3) by the formal
. oo —p—1 . P .
series )~ u~P~!vP yields an equivalent relation

[tij(u), tru(v)] = (tkj( Jta(v) — tej(v )Zu—p 1P,

1



