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COMPUTER AND JOB-SHOP
SCHEDULING THEORY



PREFACE

In the past several years interest and new results in the theory of
deterministic scheduling have mounted at an increasing rate. This book is
an attempt to represent the current position of the field in terms of
research and the types of problems currently being investigated. As a
result, most of the material covered is relatively recent and cannot be
found elsewhere in textual form. Although the book consists of six
coordinated contributions, it is not to be considered an edited collection
of papers, but rather a multiple-author text written specifically for its
purpose. Simply because of the number of coauthors, it was necessary to
have an editor to coordinate the overall effort of seven people.

The book provides a theoretical treatment of sequencing problems
arising in computer and job-shop environments. However, the models are
simple in structure and are consequently meaningful in a very large
variety of applications. Briefly, the general model studied assumes a set of
tasks or jobs and a set of resources to be used in executing or servicing
the tasks. In almost all cases the models are deterministic in the sense that
the information describing tasks is assumed to be known in advance. This
information includes task execution times, operational precedence con-
straints, deferral costs, and resource requirements. The principal se-
quencing problems examined are the minimization of schedule lengths,
minimization of the mean time in system (weighted by deferral costs), and
scheduling to meet due dates or deadlines. A number of closely related
problems are also studied. The results presented include efficient optimal
algorithms, heuristics and their performance bounds, efficient enumera-
tive and iterative methods, and mathematical descriptions of the complex-
ity of a wide variety of sequencing problems.

Computers arise in the subject matter in at least three ways. First, they
represent an almost universal job shop for our purposes. The appearance
of virtually all the problems we analyze can be observed or envisioned in
the design or operation of general-purpose computer systems, although
the prime importance of specific problems may exist in other applications.
Second, computers must be considered in the implementation of the
enumerative and iterative approaches to sequencing problems. Finally,
the field of computer science is the origin of the complexity theory that
we introduce and then apply to problems of sequence.

As in other areas of applied mathematics, scheduling theory spans
many academic disciplines; in our case these include Industrial Engineer-
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vi PREFACE

ing, Management Science, Business Administration, Operations Re-
search, Computer Science, and Electrical Engineering. The book is
directed primarily to these departments.of research institutes and of the
academic world in which graduate students and faculty are performing
research in deterministic scheduling theory. Because of the nature of the
material, substantial mathematical maturity must be assumed on the part
of the reader. Thus as a text or supplementary material one must assume a
course with graduate students towards the end, at least, of the first year of
study. ’

I acknowledge the Institut de Recherche d’Informatique et d’ Automati-
que (Rocquencourt, France) for the primary support in the production of
this book. The initial phases and much of the work reported in Chapters 2
and 3 were supported in part by the National Science Foundation under
grant NSF-28290 at the Pennsylvania State University. The work in
Chapter 6 was supported by the National Science Foundation under
grants NSF-GK-37400 and NSF-GK-42048, and the U.S. Army Research
Office under contract DAHCO04-69-C-0012. Thanks are due to Mrs. Teddi
Potter and Mrs. Hannah Kresse for typing portions of the manuscript.

Finally, special thanks are due to Drs. M. R. Garey and D. S. Johnson
for their valuable efforts in examining and correcting the manuscript. They
have been of particular help to me, as editor, except insofar as they have,
through a constant stream of new results, attempted to antiquate the book
before its appearance.

E. G. CoFrFrMAN, JRr.

University Park, Pennsylvania
May 1975
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CHAPTER ONE

INTRODUCTION TO DETERMINISTIC
SCHEDULING THEORY

E. G. COFFMAN, JR.

INSTITUT DE RECHERCHE D’INFORMATIQUE ET D'AUTOMATIQUE,
ROCQUENCOURT, FRANCE*

In this chapter we introduce and put into a common contexi the contents
of the remainder of the book. In so doing, we present common notation
for models analyzed in subsequent chapters, as well as some additional
results serving as background or complementary material extending and
unifying the coverage of the book. As a result, it is recommended that the
reader examine the present chapter before attempting to read Chapters 2
through 6. Although each of Chapters 2 through 6 may be read without any
essential recourse to material in the others, the reader will note that there
are reasons for the sequence chosen for the chapters.

The mutual independence of Chapters 2 through 6 is of course a
convenience and to some extent a result of a multiple-author book in
which appear several different styles of writing and approaches to
notation. However, the subject matter has been partitioned in such a way
that this mutual independence is not unnatural. Consequently, any
discontinuities in style and presentation experienced in passing from one
chapter to another should be tolerable, especially if one first makes
reference to relevant material in this chapter.

In Section 1.1 the objectives and motivations of the book are discussed;
the general model to be studied is presented in Section 1.2. Section 1.3
discusses background results drawn primarily from Conway, Maxwell,
and Miller [CMM]. Section 1.4 reviews the results of Chapters 2 through
6, making use of tabular presentations where possible. A number of
related topics, covered in Section 1.5, complement the material in
Chapters 2 through 6. Finally, in Section 1.6 some comments are made on
the notation used in subsequent chapters.

* On leave from The Pennsylvania State University.



2 Introduction to Deterministic Scheduling Theory

1.1 OBJECTIVES AND MOTIVATIONS

In very general terms, the scheduling problems studied in this book
assume a set of resources or servers and a fixed system of tasks which is
to be serviced by these resources. Based on prespecified properties of and
constraints on the tasks and resources, the problem is to find an efficient
algorithm for sequencing the tasks to optimize or tend to optimize some
desired performance measure. The primary measures studied are
schedule length and the mean time spent in the system by the tasks. The
models of these problems we analyze are deterministic in the sense that
all information governing the scheduling decision is assumed to be known
in advance. In particular, the tasks and all information describing them
are assumed to be available at the outset, which we normally take as time
t=0.

Since one can not organize an effective work day, plan examination
periods at universities, or even prepare a nontrivial meal without fre-
quently encountering such problems, it does not seem necessary to dwell
on motivations for the study of these problems. On the other hand, our
interest must focus on problem formulations that reflect applications in
which poor sequencing decisions incur intolerably large costs. Thus the
assumptions by which the problem is formalized ought, for example, to
reflect general industrial job shops. In fact, because of primary associa-
tions and interests of the authors, the original context of the models
analyzed is often computer systems.

Readers who are well-informed about general-purpose computer ar-
chitectures and the problems of economical computer operation will
realize at once that we are sacrificing very little in generality. One seldom
finds basic sequencing problems that do not have interesting and impor-
tant counterparts in existing or proposed computer systems. But it is
worth noting here, also as a justification for the book’s title, that specific
questions of application will not be discussed. For, as we shall see later,
the book reflects the fact that significant theoretical results (apart from
general complexity issues) are largely confined to rather simplistic models
that apply over a broad spectrum of real-life scheduling problems.

Many similar terms are used abstractly in this book without being
formally defined. For example, unless otherwise noted, jobs, tasks,
programs (in a computer), and customers can all be regarded as equivalent
for our purposes. Also, resources may be referred to as machines, storage
devices, and most commonly, processors. With respect to appropriate
resources jobs may be performed, run, executed, stored, or serviced. We
may use rule, procedure, or an appropriate function or mapping instead of
algorithm; and the terms scheduling, sequencing, allocation, and assign-
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ment are used synonymously or analogously, depending on context. As
customary in current literature, nontrivial algorithms are specified using
an informal Algol-like notation; no special devices appear that will not be
transparent to the reader.

Broadly speaking, the goal of this book is a presentation and analysis of
deterministic sequencing problems which is sufficiently comprehensive to
ensure that
(1) the status of recent and ongoing research in this field is adequately
covered, and
(2) the significant principles that can be abstracted from current and past
analyses and formal approaches to these problems are well represented.

In these days, any attempt at a book that is an unqualified success in
both respects is bound to fail; it would be in a constant state of writing. Of
course, the primary reason for this is the usual difficulty in remaining au
courant in a field that has accumulated as much momentum as scheduling
theory. But the problem is aggravated enormously because scheduling
theory spans several disciplines, each of which is large and vigorous in its
own right. We are referring to the many industrial research as well as
academic departments of Operations Research, Management Science,
Computer Science, Industrial Engineering, Electrical Engineering, and
Applied Mathematics, in which one finds the (increasingly) many resear-
chers currently engaged in the advancement of scheduling theory. It
would be impossible to cover the great variety of specific systems that
form the principal motivations in these disciplines. Thus the more modest
goal is to focus on tractable, generic models of simple structure whose
combinatorial complexity and analysis resembles or specializes that of
the various structures encountered in the above-mentioned disciplines.

After a more formal discussion of the results of subsequent chapters
we return to the question of objectives vis-a-vis the types of problems and
approaches not treated in detail. We conclude this section with some
remarks on the literature as it bears on our point of departure. The
emphasis of subsequent chapters is on results which have appeared
within the last 7 or 8 years; in fact, most of these have appeared within the
last 4 or 5 years. Thus in terms of textual material, the initial chapters of
the book by Conway, Maxwell, and Miller [CMM], which was published
in 1967, form a natural basis for the present work. We especially
recommend this book to the reader desiring engineering motivation
beyond that provided here. For again, we emphasize that our treatment is
almost wholly mathematical, with very little recourse to discussions of
pragmatics. The applicability (and, of course, inapplicability) of our work
will be quite evident in virtually all cases, owing primarily to the
simplicity of the models. But in [CMM] one obtains good insight into the
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general problems in practice and the many features of such problems that
extend the models analyzed here but for which comparable results are not
known (see also [Bak]).

This book presents virtually all the theoretical results in [CMM] that
fall within the boundaries of deterministic scheduling theory. They form
the background for the new results. Indeed, this background material
occupies only a couple of brief sections in Chapters 1 and 2. Additional
background material concerned with computer sequencing problems and
relevant to parts of Chapters 2 and S can be found in a more recent text
[CD] on operating-systems theory. In fact, the third chapter of the latter
book forms a small subset whose limitations motivated the conception of
the present work. Thus the present book is largely new material not
appearing elsewhere in textual form. For recent survey papers dealing
with many of the subjects of this book, the reader is referred to [G3],
[Co]l, [B1], and [BLR].

1.2 A GENERAL MODEL

The scheduling model, from which subsequent problems are drawn, is
described by considering in sequence the resources, task systems, se-
quencing constraints, and performance measures. (At the end of the
chapter we describe briefly the notational questions relevant to this and
subsequent chapters).

1.2.1 Resources

In the majority of the models studied, the resources consist simply of a
set P ={P,,..., P,} of processors. Depending on the specific problem,
they are either identical, identical in functional capability but different in
speed, or different in both function and speed.

In the most general model there is also a set of additional resource
types & ={R,,..., R}, some (possibly empty) subset of which is re-
quired during the entire execution of a task on some processor. The total
amount of resource of type R; is given by the positive number m;. In the
computer application, for example, such resources may represent primary
or secondary storage, input/output devices, or subroutine libraries.*
Although it is possible to include the processors in R, it is more
convenient to treat them separately because

* In this chapter, unless noted otherwise, and in Chapter 4 a resource type R, is to be
regarded as a set of m, identical resources. In the somewhat more general model of Chapter
5, m; is the amount of resource R; usually normalized to 1, any fraction of which may be
required for executing a given task.
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(1) they will constitute a resource type necessarily in common with all
tasks (although two different tasks need not require the same processors),
and

(2) they are discretized with the restriction that a task can execute on at
most one processor at a time.

These constraints need not apply to the resource types R;, 1 =i =s.

1.2.2 Task Systems

A general task system for a given set of resources can be defined as the
system (7, <, [1;], {®;}, {w;}) as follows:

1.  ={T,,..., T.} is a set of tasks to be executed.

2. < is an (irreflexive) partial order defined on J which specifies
operational precedence constraints. That is, T; < T; signifies that T; must
be completed before T; can begin.

3. [m;]1s an m X n matrix of execution times, where 7; >0 is the time
required to execute T, 1 =j = n, on processor P, 1 =i = m. We suppose
that 7; = = signifies that T; cannot be executed on P; and that for each j
there exists at least one i such that 7; <. When all processors are
identical we let 7; denote the execution time of 7, common to each
processor.

4. R; =[R«(T;),...,R,(T;)],1=j=n, specifies in the ith component,
the amount of resource type R; required throughout the execution of T;.
We always assume R;(T;) <= m; for all i and j.

5. The weights w;, 1 =i =< n, are interpreted as deferral costs (or more
exactly cost rates), which in general may be arbitrary functions of
schedule properties influencing T.. However, the w; are taken as constants
in the models we analyze. Thus the ‘“cost” of finishing T; at time ¢ is
simply wit.

This formulation contains far more generality than we intend to
embrace in subsequent chapters, but each problem studied can be
represented as a special case of the model. One particular restriction
worth noting is the limitation on operational precedence. We cannot, for
example, represent loops in computer programs modeled as task systems.
Note that the partial order < is conveniently represented as a directed,
acyclic graph (or dag) with no (redundant) transitive arcs. Unless stated
otherwise, we assume < is given as a list of arcs in such a graph. In
general, however, the way in which a partial order is specified in a given
problem may influence the complexity of its solution. (We return to this
point later.)

In Fig. 1.1 for example, the notation T:/7; is introduced for labeling
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T, T,/2 /1

Ty/6

Task/execution time, identical processors

Figure 1.1 A dag representation of (7, <, {r:}).

Notation and properties:
1. Acyclic.
2. No transitive edges: (T,, Ts) would be such an edge.
3. T\, T, Ts, T\ are initial vertices; Ts, Ts, T are terminal vertices.
4. For example, T, is a successor of T\, T,, Ts, T,, Ts but an immediate successor of only
T., Ts; Ts is a predecessor of T,, Ts, Ts but an immediate predecessor of only T;, Ts.
S.Levels: 8 9 8 7 7 3 S5 6 2 1
T, T. T Ts Ts Te T, Ts Ts T
6. Critical paths: T,, Ts, Tg and T,, T4, T4, Ts.

vertices. Tasks are occasionally referred to simply by their indices (e.g.,
“task 1"’ may be used rather than T, especially when graph vertices are
more conveniently labeled with integers).

As the reader might expect, we make heavy use of graphical methods
for defining task systems, rather than defining them as appropriate
five-tuples. In so doing we choose a number of more or less commonly
used terms concerning dags. In particular, a path of length k from T to T’
in a given graph G is a sequence of vertices* (tasks) T;, ..., T, such that
T=T,T =T, (k=1)and (T, T,,)isanarcin G forall 1=j=k —1.
Moreover, if such a path exists, T will be called a predecessor of T' and
T' a successor of T. If k =2 the terms immediate predecessor and
immediate successor will be used. Initial vertices are those with no
predecessors, and terminal vertices are those with no successors. The
graph forms a forest if either each vertex has at most one predecessor, or
each vertex has at most one successor. If a forest has in the first case
exactly one vertex with no predecessors, or in the second case, exactly

*The term node is used synonymously with vertex.
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one vertex with no successors, it is also called a tree. In either case, the
terms root and leaf have the usual meaning. The level of a vertex T is the
sum of the execution times associated with the vertices in a path from T
to a terminal vertex such that this sum is maximal. Such a path is called a
critical path if the vertex T is at the highest level in the graph.

1.2.3 Sequencing Constraints

By “constraint’” we mean here a restriction of scheduling algorithms to
specific (though broad) classes. Two main restrictions are considered.

1. Nonpreemptive scheduling: with this restriction a task cannot be
interrupted once it has begun execution; that is, it must be allowed to run
to completion. In general, preemptive scheduling permits a task to be
interrupted and removed from the processor under the assumption that it
will eventually receive all its required execution time, and there is no loss
of execution time due to preemptions (i.e., preempted tasks resume
execution from the point at which they were last preempted).

2. List scheduling: in this type of scheduling an ordered list of the
tasks in J is assumed or constructed beforehand. This list is often called
the priority list. The sequence by which tasks are assigned to processors is
then decided by a repeated scan of the list. Specifically, when a processor
becomes free for assignment, the list is scanned until the first unexecuted
task T is found which is ready to be executed; that is, the task can be
executed on the given processor, all predecessors of T have been
completed, and sufficient resources exist to satisfy R,(T) for each
1 =i =s. This task is then assigned to execute on the available processor.
We assume the scan takes place instantaneously. Also, if more than one
processor is ready for assignment at the same time, we assume they are
assigned available tasks in the order P, before P, before P, etc. As a
matter of notation we assume that the list is ordered (and scanned) from
left to right and written in the form L = (T;,, ..., T.,). Preemptions are not
considered; thus list schedules form a subset of nonpreemptive
schedules.

Before discussing performance measures, let us illustrate the means by
which schedules are to be represented graphically, assuming s = 0. We
use the type of timing diagram illustrated in Fig. 1.2 for the task system
shown in Fig. 1.1. In the obvious way the number of processors
determines the number of horizontal lines which denote time axes. The
hatching shown in the figure represents periods during which processors
are idle. When the need arises to refer to idle periods, the symbol @,
appropriately subscripted when necessary, is used. Also, the symbol D
denotes these diagrams, when such notation is desired. The symbols s;



